Lodewijk V Dekker

Learn More
Pain is unique among sensations in that the perceived intensity increases, or sensitizes, during exposure to a strong stimulus. One important mediator of sensitization is bradykinin (BK), a peptide released as a consequence of tissue damage. BK enhances the membrane ionic current activated by heat in nociceptive neurons, using a pathway that involves(More)
Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. More than 100 internationally recognised specialist breast cancer scientists, clinicians and(More)
Following the initial identification of protein kinase C (PKC) by Nishizuka and co-workers in the late seventies, a wealth of information on this protein kinase has accumulated. Perhaps most striking was the realization that PKC is not just a single polypeptide but in fact consists of a large family of related proteins. These PKC isotypes are unique, not(More)
We have analysed the involvement of the beta isotype of the protein kinase C (PKC) family in the activation of NADPH oxidase in primary neutrophils. Using immunofluorescence and cell fractionation, PKC-beta is shown to be recruited to the plasma membrane upon stimulation with phorbol ester and to the phagosomal membrane upon phagocytosis of IgG-coated(More)
sharply as the temperature is elevated (Meyer et al., Pain is unique among sensations in that the perceived 1994). Prior damage or inflammation increases the intenintensity increases, or sensitizes, during exposure to sity of the sensation of heat pain and shifts the threshold a strong stimulus. One important mediator of sensitifor eliciting a sensation of(More)
BACKGROUND The protein kinase C (PKC) family of lipid-dependent serine/theonine kinases plays a central role in many intracellular eukaryotic signalling events. Members of the novel (delta, epsilon, eta, theta) subclass of PKC isotypes lack the Ca2+ dependence of the conventional PKC isotypes and have an N-terminal C2 domain, originally defined as V0(More)
As potential targets for polyphosphoinositides, activation of protein kinase C (PKC) isotypes (beta 1, epsilon, zeta, nu) and a member of the PKC-related kinase (PRK) family, PRK1, has been compared in vitro. PRK1 is shown to be activated by both phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) as well as phosphatidylinositol 3,4,5-trisphosphate(More)
Recent studies have demonstrated that phorbol diesters enhance the release of various neurotransmitters. It is generally accepted that activation of protein kinase C (PKC) is the mechanism by which phorbol diesters act on neurotransmitter release. The action of PKC in neurotransmitter release is very likely mediated by phosphorylation of substrate proteins(More)
Protein kinase C is an important target enzyme for lipid second messengers. Recent developments have focused on the tertiary structure analysis of domains present in protein kinase C and in combination with functional approaches such as mutagenesis and domain expression have generated a detailed understanding of the modular mechanism by which lipids cause(More)
Protein kinase C (PKC) is believed to have a crucial role in synaptic transmitter release and long-term potentiation. An important substrate of PKC in the brain is the neuron-specific presynaptically localized protein B-50 (also termed GAP-43, F1, pp46 or P-57). B-50 has been implicated in the regulation of polyphosphoinositide metabolism and calmodulin(More)