Learn More
Valproic acid (VPA; 2-n-propylpentanoic acid) is widely used as a major drug in the treatment of epilepsy and in the control of several types of seizures. Being a simple fatty acid, VPA is a substrate for the fatty acid beta-oxidation (FAO) pathway, which takes place primarily in mitochondria. The toxicity of valproate has long been considered to be due(More)
alpha-Methylacyl-CoA racemase plays an important role in the beta-oxidation of branched-chain fatty acids and fatty acid derivatives because it catalyzes the conversion of several (2R)-methyl-branched-chain fatty acyl-CoAs to their (S)-stereoisomers. Only stereoisomers with the 2-methyl group in the (S)-configuration can be degraded via beta-oxidation.(More)
Only a single patient with 3-hydroxyisobutyryl-CoA hydrolase deficiency has been described in the literature, and the molecular basis of this inborn error of valine catabolism has remained unknown until now. Here, we present a second patient with 3-hydroxyisobutyryl-CoA hydrolase deficiency, who was identified through blood spot acylcarnitine analysis(More)
The carnitine-acylcarnitine carrier (CAC) catalyzes the translocation of long-chain fatty acids across the inner mitochondrial membrane. We cloned and sequenced the human CAC cDNA, which has an open reading frame of 903 nucleotides. Northern blot studies revealed different expression levels of CAC in various human tissues. Furthermore, mutation analysis was(More)
We report on three patients (two siblings and one unrelated) presenting in infancy with progressive muscle weakness and paralysis of the diaphragm. Metabolic studies revealed a profile of plasma acylcarnitines and urine organic acids suggestive of a mild form of the multiple acyl-CoA dehydrogenation defect (MADD, ethylmalonic/adipic acid syndrome).(More)
The Brown-Vialetto-Van Laere syndrome is a rare neurological disorder which may present at all ages with sensorineural deafness, bulbar palsy and respiratory compromise. Fazio-Londe syndrome is considered to be the same disease entity. Recently it was demonstrated that in some patients the disease is caused by mutations in the SLC52A3 gene which encodes the(More)
Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study, we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were performed using isovaleryl-CoA dehydrogenase (IVD),(More)
In recent years tremendous progress has been made with respect to the enzymology of the mitochondrial fatty acid beta-oxidation machinery and defects therein. Firstly, a number of new mitochondrial beta-oxidation enzymes have been identified, including very-long-chain acyl-CoA dehydrogenase (VLCAD) and mitochondrial trifunctional protein (MTP). Secondly,(More)
Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with(More)
OBJECTIVE Sanfilippo disease (mucopolysaccharidosis type III [MPS III]) is a rare neurodegenerative metabolic disease caused by a deficiency of 1 of the 4 enzymes involved in the degradation of heparan sulfate (HS), a glycosaminoglycan (GAG). Genistein has been proposed as potential therapy but its efficacy remains uncertain. We aimed to determine the(More)