Lo-Kong Chan

Learn More
AIMS Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in(More)
BACKGROUND & AIMS Deleted in liver cancer 1 (DLC1), which encodes a Rho GTPase activating protein, is a bona fide tumor suppressor in hepatocellular carcinoma. Underexpression of DLC1 in cancer has been attributed to genomic deletion and epigenetic silencing. However, the regulatory mechanism of the tumor suppressive activity of DLC1 remains elusive. In(More)
Deleted in Liver Cancer 1 (DLC1) is a tumour suppressor that encodes a RhoGTPase-activating protein (RhoGAP) and is frequently inactivated in many human cancers. The RhoGAP activity of DLC1 against Rho signalling is well documented and is strongly associated with the tumour suppressor functions of DLC1. However, the mechanism by which the RhoGAP activity of(More)
BACKGROUND Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism.(More)
BACKGROUND Deleted in liver cancer (DLC) is a family of tumour suppressors that plays a critical role in hepatocellular carcinoma (HCC). AIMS This study aimed to document the expression profiles of the three known DLC1 isoforms (alpha, beta and gamma) in normal human tissues and human HCCs and address their functional and regulatory differences. We also(More)
The focal adhesion protein Tensin4, also known as cten (c-terminal tensin like), is structurally distinct from the three other members in the Tensin family. Its expression and potential functions in cancers including hepatocellular carcinoma (HCC) are not well understood. With immunohistochemistry, 43% (13/30) of our human HCC cases showed up-regulation of(More)
BACKGROUND Deleted in liver cancer 1 (DLC1) serves as an important RhoGTPase activating protein (RhoGAP) protein that terminates active RhoA signaling in human cancers. Increasing evidence has demonstrated that the tumor suppressive activity of DLC1 depends not only on RhoGAP activity, but also relies on proper focal adhesion localization through its(More)
The pathogenesis of hepatocellular carcinoma (HCC) is a multistep process involving the progressive accumulation of molecular alterations pinpointing different molecular and cellular events. The next-generation sequencing technology is facilitating the global and systematic evaluation of molecular landscapes in HCC. There is emerging evidence supporting the(More)
OBJECTIVE We investigated the effect and mechanism of hypoxic microenvironment and hypoxia-inducible factors (HIFs) on hepatocellular carcinoma (HCC) cancer stemness. DESIGN HCC cancer stemness was analysed by self-renewal ability, chemoresistance, expression of stemness-related genes and cancer stem cell (CSC) marker-positive cell population. Specific(More)
Following epithelial-mesenchymal transition, acquisition of avian trunk neural crest cell (NCC) polarity is prerequisite for directional delamination and migration, which in turn is essential for peripheral nervous system development. However, how this cell polarization is established and regulated remains unknown. Here we demonstrate that, using the RHOA(More)