Learn More
Image denoising is an important problem in image processing since noise may interfere with visual or automatic interpretation. This paper presents a new approach for image denoising in the case of a known uncorrelated noise model. The proposed filter is an extension of the nonlocal means (NL means) algorithm introduced by Buades , which performs a weighted(More)
Many tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change(More)
—Speckle noise is an inherent problem in coherent imaging systems like synthetic aperture radar. It creates strong intensity fluctuations and hampers the analysis of images and the estimation of local radiometric, polarimetric or interferometric properties. SAR processing chains thus often include a multi-looking (i.e., averaging) filter for speckle(More)
Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle(More)
Inline digital holograms are classically reconstructed using linear operators to model diffraction. It has long been recognized that such reconstruction operators do not invert the hologram formation operator. Classical linear reconstructions yield images with artifacts such as distortions near the field-of-view boundaries or twin images. When objects(More)
Image deblurring is essential to high resolution imaging and is therefore widely used in astronomy, microscopy or computational photography. While shift-invariant blur is modeled by convolution and leads to fast FFT-based algorithms, shift-variant blurring requires models both accurate and fast. When the point spread function (PSF) varies smoothly across(More)
Interferometric SAR images suffer from a strong noise and their regularization is often a prerequisite for successful use of their information. Independently of the unwrapping problem, interferometric phase denoising is a difficult task due to shadows and discontinuities. In this paper, we propose to jointly filter phase and amplitude data in a Markovian(More)