Learn More
Recurrent breast cancer Bleomycin Cisplatin Electric pulses Complete response A B S T R A C T Purpose: To evaluate and confirm efficacy and safety of electrochemotherapy with bleomy-cin or cisplatin on cutaneous and subcutaneous tumour nodules of patients with malignant melanoma and other malignancies in a multicenter study. Patients and methods: This was a(More)
This study introduces a new method for minimally invasive treatment of cancer—the ablation of undesirable tissue through the use of irreversible electroporation. Electroporation is the permeabilization of the cell membrane due to an applied electric field. As a function of the field amplitude and duration, the permeabilization can be reversible or(More)
Electrochemotherapy is a technique where electric pulses in combination with chemotherapeutic agents are applied to tumor cells. In general, patients find electrochemotherapy tolerable, in spite of unpleasant sensations associated with contraction of muscles located beneath or in the vicinity of the electrodes. These contractions are due to the intensity of(More)
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We report very efficient plasmid DNA transfer in muscle fibers by(More)
Permeabilising electric pulses can be advantageously used for DNA electrotransfer in vivo for gene therapy, as well as for drug delivery. In both cases, it is essential to know the electric field distribution in the tissues: the targeted tissue must be submitted to electric field intensities above the reversible permeabilisation threshold (to actually(More)
Electroporation is the phenomenon in which cell membrane permeability is increased by exposing the cell to short high-electric-field pulses. Reversible electroporation treatments are used in vivo for gene therapy and drug therapy while irreversible electroporation is used for tissue ablation. Tissue conductivity changes induced by electroporation could(More)
In cell culture the cytotoxicity of some anticancer drugs, especially bleomycin, can be greatly enhanced by exposing cells to non-cytotoxic electric pulses. Nude or conventional mice bearing subcutaneous transplanted tumours were treated with intramuscular doses of bleomycin followed by local delivery of electric pulses similar to those used in vitro.(More)
This paper reports results of in vivo experiments that confirm the feasibility of a new minimally invasive method for tissue ablation, irreversible electroporation (IRE). Electroporation is the generation of a destabilizing electric potential across biological membranes that causes the formation of nanoscale defects in the lipid bilayer. In IRE, these(More)
Sequential model of liver tissue electropermeabilisation around two needle electrodes was designed by computing electric field (E) distribution by means of the finite element (FE) method. Sequential model consists of a sequence of static FE models which represent E distribution during tissue permeabilisation. In the model an S-shaped dependency between(More)
In vivo electroporation (EP) is gaining momentum for drug and gene delivery. In particular, DNA transfer by EP to muscle tissue can lead to highly efficient long-term gene expression. We characterized a vascular effect of in vivo EP and its consequences for drug and gene delivery. Pulses of 10-20,000 micros and 0.1-1.6 kV/cm were applied over hind- and(More)