Learn More
In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging(More)
This paper reports results of in vivo experiments that confirm the feasibility of a new minimally invasive method for tissue ablation, irreversible electroporation (IRE). Electroporation is the generation of a destabilizing electric potential across biological membranes that causes the formation of nanoscale defects in the lipid bilayer. In IRE, these(More)
Electroporation is a method to introduce molecules, such as gene constructs or small drugs, into cells by temporarily permeating the cell membrane with electric pulses. In molecular medicine and biotechnology, tissue electroporation is performed with electrodes placed in the target area of the body. Currently, tissue electroporation, as with all other(More)
One of the ways to potentiate antitumor effectiveness of chemotherapeutic drugs is by local application of short intense electric pulses. This causes an increase of the cell membrane permeability and is called electropermeabilization. In order to study the course of tissue permeabilization of a subcutaneous tumor in small animals, a mathematical model was(More)
Efficient cell electrotransfection can be achieved using combinations of high-voltage (HV; 800 V/cm, 100 micros) and low-voltage (LV; 80 V/cm, 100 ms) pulses. We have developed equipment allowing the generation of various HV and LV combinations with precise control of the lag between the HV and LV pulses. We injected luciferase-encoding DNA in skeletal(More)
Sequential model of liver tissue electropermeabilisation around two needle electrodes was designed by computing electric field (E) distribution by means of the finite element (FE) method. Sequential model consists of a sequence of static FE models which represent E distribution during tissue permeabilisation. In the model an S-shaped dependency between(More)
We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably(More)
Electropermeabilization of the cell membrane is a phenomenon caused by exposure of the cell to electric pulses. Permeabilization depends on pulse duration, pulse amplitude, the number of pulses delivered, and also on other experimental conditions. With these parameters properly chosen, the process of permeabilization is reversible and cells return to their(More)
  • L M Mir, S Orlowski, J Belehradek, J Teissie, M P Rols, C +5 others
  • 2002
Short and intense electric pulses (EP) are regularly used in almost all molecular and cellular biology laboratories to introduce foreign DNA, as well as other exogeneous molecules, into living cells. Besides these in vitro applications, some in vivo applications have recently emerged. Biomedical application of EP is thus a new interdisciplinary field at the(More)
Efficient DNA electrotransfer can be achieved with combinations of short high-voltage (HV) and long low voltage (LV) pulses that cover two effects of the pulses, namely, target cell electropermeabilization and DNA electrophoresis within the tissue. Because HV and LV can be delivered with a lag up to 3000 sec between them, we considered that it was possible(More)