Learn More
—Translation Lookaside Buffers (TLBs) are ubiquitously used in modern architectures to cache virtual-to-physical mappings and, as they are looked up on every memory access, are paramount to performance scalability. The emergence of chip-multiprocessors (CMPs) with per-core TLBs, has brought the problem of TLB coherence to front stage. TLBs are kept coherent(More)
Heterogeneous architectures are currently widespread. With the advent of easy-to-program general purpose GPUs, virtually every recent desktop computer is a heterogeneous system. Combining the CPU and the GPU brings great amounts of processing power. However, such architectures are often used in a restricted way for domain-specific applications like(More)
Energy efficiency is a first-order concern when deploying any computer system. From battery-operated mobile devices, to data centers and supercomputers, energy consumption limits the performance that can be offered. We are exploring an alternative to current supercomputers that builds on the small energy-efficient mobile processors. We present results from(More)
As a basic building block of many applications, sorting algorithms that efficiently run on modern machines are key for the performance of these applications. With the recent shift to using GPUs for general purpose compuing, researches have proposed several sorting algorithms for single-GPU systems. However, some workstations and HPC systems have multiple(More)
Today's complex software systems are neither secure nor reliable. The rudimentary software protection primitives provided by current hardware forces systems to run many distrusting software components (e.g., procedures, libraries, plugins, modules) in the same protection domain, or otherwise suffer degraded performance from address space switches. We(More)
Cache coherence protocols limit the scalability of chip multiprocessors. One solution is to introduce a local memory alongside the cache hierarchy, forming a hybrid memory system. Local memories are more power-efficient than caches and they do not generate coherence traffic but they suffer from poor programmability. When non-predictable memory access(More)
Penicillium expansum, the causal agent of blue mould of pome fruits, is a major postharvest pathogen in all producing countries. To develop a better understanding of disease resistance mechanisms in apples, a comprehensive transcriptional analysis of apple gene expression in response to a compatible (P. expansum) and non-host (Penicillium digitatum)(More)
In this paper we present AMGE, a programming framework and runtime system that transparently decomposes GPU kernels and executes them on multiple GPUs in parallel. AMGE exploits the remote memory access capability in modern GPUs to ensure that data can be accessed regardless of its physical location, allowing our runtime to safely decompose and distribute(More)
We present AMGE, a programming framework and runtime system to decompose data and GPU kernels and execute them on multiple GPUs concurrently. AMGE exploits the remote memory access capability of recent GPUs to guarantee data accessibility regardless of its physical location, thus allowing AMGE to safely decompose and distribute arrays across GPU memories.(More)
The increasing number of cores in manycore architectures causes important power and scalability problems in the memory subsystem. One solution is to introduce scratchpad memories alongside the cache hierarchy, forming a hybrid memory system. Scratchpad memories are more power-efficient than caches and they do not generate coherence traffic, but they suffer(More)
  • 1