Learn More
The size of silicon transistors used in microelectronic devices is shrinking to the level at which quantum effects become important. Although this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin(More)
The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope can manipulate individual atoms and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based(More)
The didjeridu, or yidaki, is a simple tube about 1.5 m long, played with the lips, as in a tuba, but mostly producing just a tonal, rhythmic drone sound. The acoustic impedance spectra of performers' vocal tracts were measured while they played and compared with the radiated sound spectra. When the tongue is close to the hard palate, the vocal tract(More)
In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a(More)
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the optical and spin resonances of the NV- center are observed under hydrostatic pressures up to 60 GPa. Our results motivate powerful new techniques to measure pressure and image high-pressure magnetic and electric phenomena.(More)
The Australian didgeridoo (or yidaki in the Yolngu language of northern Australia) is a simple musical instrument that, at the lips of an experienced player, is capable of a spectacular variety of timbres--considerably greater than those that can be coaxed from orchestral instruments, for example. To understand this phenomenon, we simultaneously measured(More)
Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here, we demonstrate the detection of gadolinium spin labels in an(More)
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using tight-binding and band minima basis approaches and compared to the recent precision measurements. In contrast with previous effective mass-based results, the quadratic Stark coefficient obtained from both(More)
The surface code is unarguably the leading quantum error correction code for 2D nearest neighbor architectures, featuring a high threshold error rate of approximately 1%, low overhead implementations of the entire Clifford group, and flexible, arbitrarily long-range logical gates. These highly desirable features come at the cost of significant classical(More)
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of(More)