Lloyd C Trotman

Learn More
Cellular senescence has been theorized to oppose neoplastic transformation triggered by activation of oncogenic pathways in vitro, but the relevance of senescence in vivo has not been established. The PTEN and p53 tumour suppressors are among the most commonly inactivated or mutated genes in human cancer including prostate cancer. Although they are(More)
Huntington's disease (HD) is characterized by the accumulation of a pathogenic protein, Huntingtin (Htt), that contains an abnormal polyglutamine expansion. Here, we report that a pathogenic fragment of Htt (Httex1p) can be modified either by small ubiquitin-like modifier (SUMO)-1 or by ubiquitin on identical lysine residues. In cultured cells, SUMOylation(More)
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and(More)
Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten(More)
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as(More)
The proto-oncogene AKT (also known as PKB) is activated in many human cancers, mostly owing to loss of the PTEN tumour suppressor. In such tumours, AKT becomes enriched at cell membranes where it is activated by phosphorylation. Yet many targets inhibited by phosphorylated AKT (for example, the FOXO transcription factors) are nuclear; it has remained(More)
Adenovirus type 2 (Ad2) imports its DNA genome through the nuclear pore complex (NPC) of cells in interphase for viral production. Here we identify the NPC-filament protein CAN/Nup214 as a docking site for incoming Ad2 capsids. Binding to CAN is independent of cytosolic factors. Capsids disassemble at NPCs to free their DNA for import. This process requires(More)
Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in(More)
Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable(More)
Hyperactivation of the PI 3-kinase/AKT pathway is a driving force of many cancers. Here we identify the AKT-inactivating phosphatase PHLPP1 as a prostate tumor suppressor. We show that Phlpp1-loss causes neoplasia and, on partial Pten-loss, carcinoma in mouse prostate. This genetic setting initially triggers a growth suppressive response via p53 and the(More)