Learn More
The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal(More)
Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAF(II)170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2alpha (DRAP1) and NC2beta (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription(More)
The Mix/Bix family of paired-like homeobox genes encode evolutionarily conserved, sequence specific, DNA-binding transcription factors that have been implicated in the co-ordination of gene expression, axis formation and cell fate determination during gastrulation in vertebrates. When mutated, these genes give rise to dramatic phenotypes in amphibians,(More)
Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in(More)
Regulation of RNA polymerase II (pol II) transcription is a highly dynamic process requiring the coordinated interaction of an array of regulatory proteins. Central to this process is the TATA-binding protein (TBP), the key component of the multiprotein complex TFIID. Interaction of TBP with core promoters nucleates the assembly of the preinitiation complex(More)
The Mixl1 gene encodes a homeodomain transcription factor that is required for normal mesoderm and endoderm development in the mouse. We have examined the consequences of enforced Mixl1 expression during mouse embryonic stem cell (ESC) differentiation. We show that three independently derived ESC lines constitutively expressing Mixl1 (Mixl1(C) ESCs)(More)
The Mixl1 homeodomain protein plays a key role in mesendoderm patterning during embryogenesis, but its target genes remain to be identified. We compared gene expression in differentiating heterozygous Mixl1(GFP/w) and homozygous null Mixl1(GFP/Hygro) mouse embryonic stem cells to identify potential downstream transcriptional targets of Mixl1. Candidate(More)
The MYB proto-oncogene is expressed in most estrogen receptor-positive (ERα(+)) breast tumors and cell lines. Expression of MYB is controlled, in breast cancer and other cell types, by a transcriptional pausing mechanism involving an attenuation site located ∼1.7 kb downstream from the transcription start site. In breast cancer cells, ligand-bound ERα binds(More)
Rapid advances have been made in the understanding of how the highly proliferative gastrointestinal tract epithelium is regulated under homeostasis and disease. The identification of putative intestinal stem cell (ISC) genes and the ability to culture ISC capable of generating all four lineages plus the architecture of small intestinal (SI) crypts has been(More)
MYB oncogene upregulation is associated with estrogen receptor (ER)-positive breast cancer, but disease requirements for MYB function in vivo have not been explored. In this study, we provide evidence of a critical requirement for MYB functions in models of human and murine breast cancer. In human breast cancer, we found that MYB expression was critical for(More)