Learn More
Many genes have been transferred into fish for scientific and aquacultural purposes. We have been developing expression vectors containing regulatory sequences from the carp beta-actin gene enhancer/promoter for expression of genes or cDNAs in transgenic fish. Expression from these vectors varies over a 20-fold range in zebrafish, beginning within 12 hours(More)
Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published in the literature to date. We performed exome sequencing on five family trios, two(More)
N -Acetylglutamate (NAG) fulfils distinct biological roles in lower and higher organisms. In prokaryotes, lower eukaryotes and plants it is the first intermediate in the biosynthesis of arginine, whereas in ureotelic (excreting nitrogen mostly in the form of urea) vertebrates, it is an essential allosteric cofactor for carbamyl phosphate synthetase I(More)
The transcriptional regulatory elements of the β-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the β-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same(More)
N-Acetylglutamate synthase (NAGS, E.C. 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI). The mouse and human NAGS genes have been identified based on similarity to regions of NAGS from Neurospora crassa and cloned from liver cDNA libraries.(More)
N-acetylglutamate (NAG) is an endogenous essential cofactor for conversion of ammonia to urea in the liver. Deficiency of NAG causes hyperammonemia and occurs because of inherited deficiency of its producing enzyme, NAG synthase (NAGS), or interference with its function by short fatty acid derivatives. N-carbamylglutamate (NCG) can ameliorate hyperammonemia(More)
In ureotelic animals, N-acetylglutamate (NAG) is an essential allosteric activator of carbamylphosphate synthetase I (CPSI), the first enzyme in the urea cycle. NAG synthase (NAGS; EC 2.3.1.1) catalyses the formation of NAG from glutamate and acetyl-CoA in liver and intestinal mitochondria. This enzyme is supposed to regulate ureagenesis by producing(More)
In a patient with N-acetylglutamate synthase (NAGS) deficiency, incorporation of an isotopic label from ammonium chloride into urea was markedly reduced before treatment with N-carbamyl-L-glutamate (NCLG) and completely normalized following treatment. Blood ammonia rose following ammonium tracer ingestion before treatment but remained low following(More)
N-acetylglutamate synthase (NAGS) deficiency, an autosomal recessive disorder, is the last urea cycle disorder for which molecular testing became available. This is the first comprehensive report of 21 mutations that cause NAGS deficiency and of commonly found polymorphisms in the NAGS gene. Five mutations are reported here for the first time. A total of 10(More)
We have identified in Xanthomonas campestris a novel N-acetylornithine transcarbamylase that replaces ornithine transcarbamylase in the canonic arginine biosynthetic pathway of several Eubacteria. The crystal structures of the protein in the presence and absence of the reaction product, N-acetylcitrulline, were determined. This new family of(More)