Ljuban Grgic

Learn More
While diagnosis and genetic analysis of mitochondrial disorders has made remarkable progress, we still do not understand how given molecular defects are correlated to specific patterns of symptoms and their severity. Towards resolving this dilemma for the largest and therefore most affected respiratory chain enzyme, we have established the yeast Yarrowia(More)
We have studied the ubiquinone-reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica by a series of point mutations replacing conserved histidines and arginines in the 49-kDa subunit. Our results show that histidine 226 and arginine 141 probably do not ligate iron-sulfur cluster N2 but that exchanging these residues(More)
Proton pumping respiratory complex I (NADH:ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the(More)
NADH:ubiquinone oxidoreductase (complex I) is an entry point for electrons into the respiratory chain in many eukaryotes. It couples NADH oxidation and ubiquinone reduction to proton translocation across the mitochondrial inner membrane. Because complex I deficiencies occur in a wide range of neuromuscular diseases, including Parkinson's disease, there is a(More)
  • 1