Lizy Kurian John

Learn More
Microprocessor designs are on the verge of a post-RISC era in which companies must introduce new ISAs to address the challenges that modern CMOS technologies pose while also exploiting the massive levels of integration now possible. To meet these challenges, we have developed a new class of ISAs, called explicit data graph execution (EDGE), that will match(More)
A novel low power and low transistor count static energy recovery full adder (SERF) is presented in this paper. The power consumption and general characteristics of the SERF adder are then compared against three low power full adders; the transmission function adder (TFA), the dual value logic (DVL) adder and the fourteen transistor (14T) full adder. The(More)
This paper proposes the use of microprocessor performance counters for online measurement of complete system power consumption. While past studies have demonstrated the use of performance counters for microprocessor power, to the best of our knowledge, we are the first to create power models for the entire system based on processor performance events. Our(More)
The recently released SPEC CPU2006 benchmark suite is expected to be used by computer designers and computer architecture researchers for pre-silicon early design analysis. Partial use of benchmark suites by researchers, due to simulation time constraints, compiler difficulties, or library or system call issues is likely to happen; but a random subset can(More)
In computer architecture, caches have primarily been viewed as a means to hide memory latency from the CPU. Cache policies have focused on anticipating the CPU's data needs, and are mostly oblivious to the main memory. In this paper, we demonstrate that the era of many-core architectures has created new main memory bottlenecks, and mandates a new approach:(More)
This paper proposes the use of microprocessor performance counters for online measurement of complete system power consumption. The approach takes advantage of the “trickle-down” effect of performance events in microprocessors. While it has been known that CPU power consumption is correlated to processor performance, the use of well-known(More)
The increasing constraints on power consumption in many computing systems point to the need for power modeling and estimation for all components of a system. The Operating System (OS) constitutes a major software component and dissipates a significant portion of total power in many modern application executions. Therefore, modeling OS power is imperative(More)
High density memory is becoming more important as many execution streams are consolidated onto single chip many-core processors. DRAM is ubiquitous as a main memory technology, but while DRAM’s per-chip density and frequency continue to scale, the time required to refresh its dynamic cells has grown at an alarming rate. This paper shows how(More)
Contemporary DRAM systems have maintained impressive scaling by managing a careful balance between performance, power, and storage density. In achieving these goals, a significant sacrifice has been made in DRAM's operational complexity. To realize good performance, systems must properly manage the significant number of structural and timing restrictions of(More)
It is essential that a subset of benchmark programs used to evaluate an architectural enhancement, is well distributed within the target workload space rather than clustered in specific areas. Past efforts for identifying subsets have primarily relied on using microarchitecturedependent metrics of program performance, such as cycles per instruction and(More)