Learn More
Stability is essential for designing and controlling any dynamic systems. Recently, the stability of genetic regulatory networks has been widely studied by employing linear matrix inequality (LMI) approach, which results in checking the existence of feasible solutions to high-dimensional LMIs. In the previous study, the authors present several stability(More)
In this study, we explore a mathematical model to characterize the clustered microcalcifications on mammograms for predicting the pathological classification and grading. Our database consists of both retrospective cases (78 cases) and prospective cases (31 cases) with pathologically diagnosed clusters of microcalcifications on mammograms. The(More)
Clustering periodically expressed genes from their time-course expression data could help understand the molecular mechanism of those biological processes. In this paper, we propose a nonlinear model-based clustering method for periodically expressed gene profiles. As periodically expressed genes are associated with periodic biological processes, the(More)
Several methods have been proposed to infer gene regulatory networks from time course gene expression data. As the number of genes is much larger than the number of time points at which gene expression (mRNA concentration) is measured, most existing methods need some ad hoc assumptions to infer a unique gene regulatory network from time course gene(More)
As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple(More)
This paper proposes a method for segmenting the prostate on magnetic resonance (MR) images. A superpixel-based 3D graph cut algorithm is proposed to obtain the prostate surface. Instead of pixels, superpixels are considered as the basic processing units to construct a 3D superpixel-based graph. The superpixels are labeled as the prostate or background by(More)
Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling(More)
Most of multi-atlas segmentation methods focus on the registration between the full-size volumes of the data set. Although the transformations obtained from these registrations may be accurate for the global field of view of the images, they may not be accurate for the local prostate region. This is because different magnetic resonance (MR) images have(More)
Microarray technology has produced a huge body of time-course gene expression data and will continue to produce more. Such gene expression data has been proved useful in genomic disease diagnosis and drug design. The challenge is how to uncover useful information from such data by proper analysis methods such as significance analysis and clustering(More)
Many methods for inferring genetic regulatory networks have been proposed. However inferred networks can hardly be used to analyze the dynamics of genetic regulatory networks. Recently nonlinear differential equations are proposed to model genetic regulatory networks. Based on this kind of model, the stability of genetic regulatory networks has been(More)