Learn More
Neuromagnetic measurements of responses to auditory stimuli consisting of pure tones amplitude-modulated at a low frequency have been used to deduce the location of cortical activity. The evoked field source systematically increased in depth beneath the scalp with increasing frequency of the tone. The tonotopic progression can be described as a logarithmic(More)
The magnetic field pattern over the temporal area of the scalp 100 ms following the onset of a tone burst stimulus provides evidence for neuronal activity in auditory primary and association cortices that overlap in time. Habituation studies indicate that onset and offset features of a tone produce activation traces in primary cortex that are at least(More)
Noninvasive magnetoencephalography makes it possible to identify the cortical area in the human brain whose activity reflects the decay of passive sensory storage of information about auditory stimuli (echoic memory). The lifetime for decay of the neuronal activation trace in primary auditory cortex was found to predict the psychophysically determined(More)
The minimum norm least-squares approach based on lead field theory provides a unique inverse solution for a magnetic source image that is the best estimate in the least-squares sense. This has been applied to determine the source current distribution when the primary current is confined to a surface or set of surfaces. In model simulations of cortical(More)
Neuromagnetic studies show that the location of cortical activity evoked by modulated tones and by click stimuli in the steady state paradigm can be determined non-invasively with a precision of a few millimeters. The progression of locations for tones of increasing frequency establish an orderly tonotopic map in which the distance along the cortex varies(More)
The performance of a cryogenic system that monitors the extracranial magnetic field simultaneously at 14 positions over the scalp has been evaluated to determine the accuracy with which neuronal activity can be located within the human brain. Initially, measurements were implemented on two model systems, a lucite sphere filled with saline and a model skull.(More)
The primary projection areas in the human somatosensory cortex activated by electrical stimulation of the digits of the hand and the ankle were localized by measuring the magnetic field outside the head contralateral to the side of stimulation. Most of the spatial variation in the amplitude of the field component normal to the scalp could be accounted for(More)
The human brain is found to produce a magnetic field near the scalp which varies in synchrony with periodic electrical stimulation applied to a finger. Use of a highly sensitive superconducting quantum interference device as a magnetic field detector reveals that the brain's field is sharply localized over the primary projection area of the sensory cortex(More)
Abstract Electric and magnetic recordings of average power within the high a band (10-12 Hz) were made over the parietal and occipital areas of the scalp while subjects were engaged in the mental imagery task of Cooper and Shepard. The subject had to determine whether an abstract probe figure was identical to a memory figure presented earlier at a different(More)