Learn More
A new member of the cyclin family cyclin Y (CCNY) is involved in the regulation of various physiological processes. In this study, the role of CCNY in energy metabolism was characterized. We found that compared with wild-type (WT) mice, Ccny knockout (KO) mice had both lower body weight and lower fat content. The Ccny KO mice also had a higher metabolic(More)
Cyclin Y-like 1 (Ccnyl1) is a newly-identified member of the cyclin family and is highly similar in protein sequences to Cyclin Y (Ccny). However, the function of Ccnyl1 is poorly characterized in any organism. Here we found that Ccnyl1 was most abundantly expressed in the testis of mice and was about seven times higher than the level of Ccny. Male(More)
Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic(More)
The Gβγ heterodimer is an important signal transducer. Gβ, however, is prone to misfolding due to its requirement for Gγ and chaperones for proper folding. How cells dispose of misfolded Gβ (mfGβ) is not clear. Here, we showed that mfGβ was able to be polyubiquitinated and subsequently degraded by the proteasome. It was sequestered in aggresomes after the(More)
Mammalian eIF3 is composed of 13 subunits and is the largest eukaryotic initiation factor. eIF3 plays a key role in protein biosynthesis. However, it is not fully understood how different subunits contribute to the structural integrity and function of the eIF3 complex. Whether eIF3 is essential for embryonic development and homeostasis is also not known.(More)
ZEB1 is a transcription factor that induces epithelial-mesenchymal transition, tumor metastasis, and therapy resistance. ZEB1 protein is subject to ubiquitination and degradation, but the mechanism by which ZEB1 is stabilized in cells remains unclear. By screening a human deubiquitinase library, we identified USP51 as a deubiquitinase that binds,(More)
Cyclin Y, a membrane associated cyclin, is capable of binding and activating CDK14. Here we report that human cyclin Y (CCNY) is a phosphoprotein in vivo and that phosphorylation of CCNY by CDK14 triggers its ubiquitination and degradation. Inactivation of either CDK14 or Cul1 results in accumulation of CCNY. An in vivo and in vitro mapping of CCNY(More)
  • 1