Learn More
Parkinson disease (PD) is a chronic neurodegenerative disorder with a cumulative prevalence of greater than one per thousand. To date three independent genome-wide association studies (GWAS) have investigated the genetic susceptibility to PD. These studies implicated several genes as PD risk loci with strong, but not genome-wide significant, associations.(More)
A susceptibility locus for coronary artery disease (CAD) has been mapped to chromosome 3q13-21 in a linkage study of early-onset CAD. We completed an association-mapping study across the 1-LOD-unit-down supporting interval, using two independent white case-control data sets (CATHGEN, initial and validation) to evaluate association under the peak.(More)
miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson's disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD,(More)
Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and(More)
Vitamin D and vitamin D receptor (VDR) have been postulated as environmental and genetic factors in neurodegeneration disorders including multiple sclerosis (MS), Alzheimer disease (AD), and recently Parkinson disease (PD). Given the sparse data on PD, we conducted a two-stage study to evaluate the genetic effects of VDR in PD. In the discovery stage, 30(More)
miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson's disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD,(More)
OBJECTIVE Recently, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) have been identified as 2 causal Parkinson disease (PD) genes. We used whole exome sequencing for rapid, parallel analysis of variations in these 2 genes. METHODS We performed whole exome sequencing in 213 patients with PD and 272(More)
Genetic studies on late-onset Alzheimer's disease (AD) have repeatedly mapped susceptibility loci onto chromosome 12q13, encompassing the vitamin D receptor (VDR) gene. Epidemiology studies have indicated vitamin D insufficiency as a risk factor for AD. Given that VDR is the major mediator for vitamin D's actions, we sought to clarify the role of VDR in(More)
A high density comparative genomic hybridization array was designed to evaluate CNVs in the genomic region of six familial PD genes in 181 PD cases and 67 controls. No CNV was found in PARK7, ATP13A2, PINK1, and LRRK2. Intronic-only CNVs were found in SNCA and PARK2 but were not associated with PD risk. A whole-gene duplication of SNCA was found in one(More)
The transcription factor GATA2 plays an essential role in the establishment and maintenance of adult hematopoiesis. It is expressed in hematopoietic stem cells, as well as the cells that make up the aortic vasculature, namely aortic endothelial cells and smooth muscle cells. We have shown that GATA2 expression is predictive of location within the thoracic(More)