Learn More
Stimulus specific adaptation (SSA) is known as a decrease of neuronal response to stimuli that are commonly presented than those rarely occurred. Previous studies have shown that SSA occurs at different levels of auditory pathway, from inferior colliculus (IC), auditory thalamus to auditory cortex (AC). In this study, we further investigated the properties(More)
Migration is a basic feature of many cell types in a wide range of species. Since the 1800s, cell migration has been proposed to occur in the nervous and immune systems, and distinct molecular cues for mammalian neurons and leukocytes have been identified. Here we report that Slit, a secreted protein previously known for its role of repulsion in axon(More)
Signaling mechanisms underlying neurotrophic regulation of synaptic transmission are not fully understood. Here we show that neurotrophin-3 (NT3)-induced potentiation of synaptic transmission at the neuromuscular synapses is blocked by inhibition of phosphoinositide-3 kinase, phospholipase C-gamma or the downstream IP3 receptors of phospholipase C-gamma,(More)
Glial cell line-derived neurotrophic factor (GDNF) prevents lesion-induced death of midbrain dopaminergic neurons, but its function in normal brain remains uncertain. Here we show that GDNF acutely and reversibly potentiated the excitability of cultured midbrain neurons by inhibiting transient A-type K(+) channels. The effects of GDNF were limited to large,(More)
Central core disease (CCD) is a congenital myopathy due to dominant mutations in the skeletal muscle ryanodine receptor gene (RYR1). The authors report three patients from two consanguineous families with symptoms of a congenital myopathy, cores on muscle biopsy, and confirmed linkage to the RYR1 locus. Molecular genetic studies in one family identified a(More)
Although recent studies indicate that brain-derived neurotrophic factor (BDNF) plays an important role in hippocampal synaptic plasticity, the underlying signaling mechanisms remain largely unknown. Here, we have characterized the signaling events that mediate the BDNF modulation of high-frequency synaptic transmission. Mitogen-associated protein kinase(More)
Molecular analyses of the chemokine fractalkine and its receptor CX3C-R1 in the rat brain have revealed a striking polarization: fractalkine is expressed constitutively in neurons and is up-regulated by TNF-alpha and IL-1beta in astrocytes. Expression of its specific receptor, CX3C-R1, is restricted to astrocytes and microglia. We have analyzed the(More)
Cyclooxygenase-2 (COX-2), the enzyme that converts arachidonic acid to prostaglandins, is overexpressed in a variety of different tumors, including those of the colon, pancreas, lung, and head and neck. We used in situ hybridization with a digoxgenin-labeled COX-2 antisense riboprobe to assess the presence of strong or intermediate versus weak or absent(More)
Previous studies have shown that brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) can enhance the survival of dopaminergic neurons in the ventral mesencephalon (VM). Here we compared several non-survival functions of the two factors in VM neurons in culture. We found that both BDNF and GDNF elicited an increase(More)
Ullrich congenital muscular dystrophy (UCMD) is caused by recessive and dominant mutations in COL6A genes. We have analysed collagen VI expression in 14 UCMD patients. Sequencing of COL6A genes had identified homozygous and heterozygous mutations in 12 cases. Analysis of collagen VI in fibroblast cultures derived from eight of these patients showed reduced(More)