Learn More
—A micromachined battery based on liquid electrolyte and metal electrodes for on-demand and disposable usages has been successfully demonstrated. The microbattery uses gold as the positive electrode and zinc as the negative electrode and is fabricated by using the standard surface micromachining technology. Two kinds of electrolytes have been tested,(More)
—Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are patterned as line-shape resistive heaters with widths of 5(More)
—A combination of surface-and bulk-micromachining techniques is used to demonstrate the feasibility of fabricating microhypodermic needles. These microneedles, which may be built with on-board fluid pumps, have potential applications in the chemical and biomedical fields for localized chemical analysis, programmable drug-delivery systems, and very small,(More)
The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser acceleration experiments. The rf gun consists of 1-,' cells driven at 2856 MHz in 7r-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, our photocathode development concentrates on robust(More)
A method of active frequency tuning on comb-shape micro resonators has been successfully demonstrated by means of localized stressing effects. A mechanical beam structure that can be resistively heated to generate thermal stress, is integrated as part of the comb-shape micro resonator for frequency tuning. Experimentally, a frequency change up to 6.5% is(More)
This paper presents two types of fuel cells: a miniature microbial fuel cell (µMFC) and a miniature photosynthetic electrochemical cell (µPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm 2. Two different microorganisms are used as biocatalysts in the anode: (1)(More)