Livia Basile

Learn More
Contact with many different biological membranes goes along the destiny of a drug after its systemic administration. From the circulating macrophage cells to the vessel endothelium, to more complex absorption barriers, the interaction of a biomolecule with these membranes largely affects its rate and time of biodistribution in the body and at the target(More)
A FRET-based random screening assay was used to generate hit compounds as sortase A inhibitors that allowed us to identify ethyl 3-oxo-2-(2-phenylhydrazinylidene)butanoate as an example of a new class of sortase A inhibitors. Other analogues were generated by changing the ethoxycarbonyl function for a carboxy, cyano or amide group, or introducing(More)
G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer(More)
Monoamine oxidase (MAO) enzymes play a central role in the pathogenesis of Alzheimer's disease (AD) and MAO inhibitors (MAOIs) are antidepressant drugs currently studied for their neuroprotective properties in neurodegenerative disorders. In the present work MAOIs such as tranylcypromine [trans-(+)-2-phenylcyclopropanamine, TCP] and its amide derivatives,(More)
The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix(More)
Imidazoline ligands in I2-type binding sites in the brain alter monoamine turnover and release. One example of an I2 binding site characterized by binding studies, kinetics, and crystal structure has been described in monoamine oxidase B (MAO B). MAO A also binds imidazolines but has a different active site structure. Docking and molecular dynamics were(More)
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging(More)
  • 1