Liubomyr S. Monastyrskii

Learn More
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use(More)
ABSTRACT In this work, we have prepared film sensor elements based on a hybrid system poly(3,4-ethylenedioxythiophene)-porous silicon nanocrystals-carbon nanotubes on flexible polymer substrates. Our FTIR spectroscopy-based studies for the molecular structure of the materials obtained suggest some interaction of their components in the hybrid layer. The(More)
We studied an effect of the graphene oxide (GO) layer on the optical and electrical properties of porous silicon (PS) in hybrid PS-GO structure created by electrochemical etching of silicon wafer and deposition of GO from water dispersion on PS. With the help of scanning electron microscopy (SEM), atomic-force microscopy (AFM), and Fourier transform(More)
The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the(More)
The impedance spectra of silicon oxide nanocomposites of porous silicon is investigated in 25 Hz - 1 MHz frequency range. The different dispersion of electrical capacity in different frequency bands and complex relaxation processes that affect the electric transport properties of nanocomposites were revealed. Based on the analysis of spectra of thermal(More)
  • 1