Learn More
The majority of subjects who attempt to learn control of a brain-computer interface (BCI) can do so with adequate training. Much like when one learns to type or ride a bicycle, BCI users report transitioning from a deliberate, cognitively focused mindset to near automatic control as training progresses. What are the neural correlates of this process of BCI(More)
The learning of a motor task is known to be improved by sleep, and sleep spindles are thought to facilitate this learning by enabling synaptic plasticity. In this study subjects implanted with electrocorticography (ECoG) arrays for long-term epilepsy monitoring were trained to control a cursor on a computer screen by modulating either the high-gamma or(More)
OBJECTIVE Human voluntary movements are a final product of complex interactions between multiple sensory, cognitive and motor areas of central nervous system. The objective was to investigate temporal sequence of activation of premotor (PM), primary motor (M1) and somatosensory (S1) areas during cued finger movements. METHODS Electrocorticography (ECoG)(More)
Spontaneous reactivation of previously stored patterns of neural activity occurs in hippocampus and neocortex during non-rapid eye movement (NREM) sleep. Notable features of the neocortical local field potential during NREM sleep are high-amplitude, low-frequency thalamocortical oscillations including K-complexes, low-voltage spindles, and high-voltage(More)
OBJECTIVE The purpose of this study is to determine the relationship between cortical electrophysiological (CE) signals recorded from the surface of the brain (subdural electrocorticography, or ECoG) and signals recorded extracranially from the subgaleal (SG) space. METHODS We simultaneously recorded several hours of continuous ECoG and SG signals from 3(More)
The objective of this study is to improve the quality of life for the visually impaired by restoring their ability to self-navigate. In this paper we describe a compact, wearable device that converts visual information into a tactile signal. This device, constructed entirely from commercially available parts, enables the user to perceive distant objects via(More)
OBJECTIVE Recently, electrocorticography-based brain-computer interfaces have been successfully used to translate cortical activity into control signals for external devices. However, the utility of such devices would be greatly enhanced by somatosensory feedback. Direct stimulation of somatosensory cortex evokes sensory perceptions, and is thus a promising(More)
BACKGROUND There is a broad need in neuroscience to understand and visualize large-scale recordings of neural activity, big data acquired by tens or hundreds of electrodes recording dynamic brain activity over minutes to hours. Such datasets are characterized by coherent patterns across both space and time, yet existing computational methods are typically(More)
Functional electrical stimulation (FES) involves artificial activation of muscles with surface or implanted electrodes to restore motor function in paralyzed individuals. Currently, FES-based prostheses produce only a limited range of movements due to the difficulty associated with identifying patterns of muscle activity needed to evoke more complex(More)