Lisbeth Schmidt Laursen

Learn More
Pregnancy-associated plasma protein-A (PAPP-A) has recently been identified as the proteinase responsible for cleavage of insulin-like growth factor binding protein (IGFBP)-4, an inhibitor of IGF action, in several biological fluids. Cleavage of IGFBP-4 by PAPP-A is believed to occur only in the presence of IGF. We here report that in addition to IGFBP-4,(More)
A novel metalloproteinase with similarity to pregnancy-associated plasma protein-A (PAPP-A), which we denoted PAPP-A2, has been identified. Through expression in mammalian cells we showed that recombinant PAPP-A2 polypeptide of 1558 residues resulted from processing of a 1791-residue prepro-protein. Unlike PAPP-A, PAPP-A2 migrated as a monomer (of 220 kDa)(More)
The bioavailability of insulin-like growth factor (IGF)-I and -II is controlled by six IGF-binding proteins (IGFBPs 1-6). Bound IGF is not active, but proteolytic cleavage of the binding protein causes release of IGF. Pregnancy-associated plasma protein-A (PAPP-A) has recently been found to cleave IGFBP-4 in an IGF-dependent manner. To experimentally(More)
The understanding of how adhesion molecules mediate the axon-glial interactions in the CNS that ensure target-dependent survival of oligodendrocytes and initiate myelination remains incomplete. Here, we investigate how signals from adhesion molecules can be integrated to regulate these initial steps of myelination. We first demonstrate that the Ig(More)
BACKGROUND Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenability to genetic and experimental manipulation and because it(More)
Pregnancy-associated plasma protein-A (PAPP-A), originally known from human pregnancy serum, has recently been demonstrated to be a metzincin superfamily metalloproteinase involved in normal and pathological insulin-like growth factor (IGF) physiology. PAPP-A specifically cleaves IGF-binding protein (IGFBP)-4, one of six antagonists of IGF action, which(More)
Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of protein synthesis represents one mechanism used to control the(More)
The activities of insulin-like growth factor (IGF)-I and -II are regulated by IGF-binding proteins (IGFBPs). Cleavage of IGFBP-4 by the metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) causes release of bound IGF and has been established in several biological systems including the human reproductive system. Using flow cytometry, we first(More)
BACKGROUND Pregnancy-associated plasma protein-A (PAPP-A) is a local regulator of insulin-like growth factor (IGF) bioavailability in physiological systems, but many structural and functional aspects of the metzincin metalloproteinase remain to be elucidated. PAPP-A cleaves IGF binding protein (IGFBP)-4 and IGFBP-5. Cleavage of IGFBP-4, but not IGFBP-5,(More)
The metzincin metalloproteinase pregnancy-associated plasma protein-A (PAPP-A, pappalysin-1) promotes cell growth by proteolytic cleavage of insulin-like growth factor-binding proteins 4 and 5, causing the release of bound insulin-like growth factors. PAPP-A binds an unknown cell-surface heparan sulfate proteoglycan, suggesting that it controls insulin-like(More)