Lisbeth Kristensson

Learn More
Preclinical data indicate that GPR103 receptor and its endogenous neuropeptides QRFP26 and QRFP43 are involved in appetite regulation. A high throughput screening (HTS) for small molecule GPR103 antagonists was performed with the clinical goal to target weight management by modulation of appetite. A high hit rate from the HTS and initial low confirmation(More)
GPR103, a G-protein coupled receptor, has been reported to have orexigenic properties through activation by the endogenous neuropeptide ligands QRFP26 and QRFP43. Recognizing that central administration of QRFP26 and QRFP43 increases high fat food intake in rats, we decided to investigate if antagonists of GPR103 could play a role in managing feeding(More)
Relaxin family peptide receptor 3 (RXFP3) is a G-protein coupled receptor mainly expressed in the brain and involved in appetite regulation. Previous studies in lean Wistar rats during the light phase have shown that the chimeric peptide R3(BΔ23-27)R/I5 suppresses food intake stimulated by an RXFP3 agonist, but has no effect on food intake when administered(More)
The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1(More)
  • 1