Lisa Yan

Learn More
We describe a method for docking a ligand into a protein receptor while allowing flexibility of the protein binding site. The method employs a multistep procedure that begins with the generation of protein and ligand conformations. An initial placement of the ligand is then performed by computing binding site hotspots. This initial placement is followed by(More)
Programmable switching chips are becoming more commonplace , along with new packet processing languages to configure the forwarding behavior. Our paper explores the design of a compiler for such switching chips, in particular how to map logical lookup tables to physical tables , while meeting data and control dependencies in the program. We study the(More)
As datacenter speeds scale to 100 Gb/s and beyond, traditional congestion control algorithms like TCP and RCP converge slowly to steady sending rates, which leads to poorer and less predictable user performance. These reactive algorithms use congestion signals to perform gradient descent to approach ideal sending rates, causing poor convergence times. In(More)
To maximise the assignment of function of the proteins encoded by a genome and to aid the search for novel drug targets, there is an emerging need for sensitive methods of predicting protein function on a genome-wide basis. GeneAtlas is an automated, high-throughput pipeline for the prediction of protein structure and function using sequence similarity(More)
An analysis of different approaches to protein structure prediction is presented based solely on the range of models submitted to the third Critical Assessment of Protein Structure Prediction (CASP3) conference. CASP conferences evaluate the current state of the art of protein structure prediction by comparing blind prediction efforts of many groups for the(More)
A range of methods has been developed to predict transmembrane helices and their topologies. Although most of these algorithms give good predictions, no single method consistently outperforms the others. However, combining different algorithms is one approach that can potentially improve the accuracy of the prediction. We developed a new method that(More)
ESFF is a rule-based force field designed for modeling organic, inorganic, and organometallic systems. To cover this broad range of molecular systems, ESFF was developed in an extensible and systematic manner. Several unique features were introduced including pseudoangle and a dot product function representing torsion energy terms. The partial atomic(More)
This article describes a novel software implementation for high-throughput scanning mutagenesis with a focus on protein stability. The approach combines molecular mechanics calculations with calculations of protein ionization and a Gaussian-chain model of electrostatic interactions in unfolded state. Comprehensive testing demonstrates a state-of-the-art(More)