Lisa Y Lawson

Learn More
The microtubule-associated protein Tau plays a crucial role in regulating the dynamic stability of microtubules during neuronal development and synaptic transmission. In a group of neurodegenerative diseases, such as Alzheimer disease and other tauopathies, conformational changes in Tau are associated with the initial stages of disease pathology. Folding of(More)
Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we(More)
The microtubule-associated protein tau, which becomes hyperphosphorylated and pathologically aggregates in a number of these diseases, is extremely sensitive to manipulations of chaperone signaling. For example, Hsp90 inhibitors can reduce the levels of tau in transgenic mouse models of tauopathy. Because of this, we hypothesized that a number of Hsp90(More)
BACKGROUND The microtubule-associated protein tau accumulates in neurodegenerative diseases known as tauopathies, the most common being Alzheimer's disease. One way to treat these disorders may be to reduce abnormal tau levels through chaperone manipulation, thus subverting synaptic plasticity defects caused by tau's toxic accretion. METHODS Tauopathy(More)
A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the(More)
The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common(More)
mRNA variance has been proposed to play key roles in normal development, population fitness, adaptability, and disease. While variance in gene expression levels may be beneficial for certain cellular processes, for example in a cell's ability to respond to external stimuli, variance may be detrimental for the development of some organs. In the bilaterally(More)
  • 1