Lisa W. Seeb

Learn More
Single nucleotide polymorphisms (SNPs) are a class of genetic markers that are well suited to a broad range of research and management applications. Although advances in genotyping chemistries and analysis methods continue to increase the potential advantages of using SNPs to address molecular ecological questions, the scarcity of available DNA sequence(More)
Until recently, single nucleotide polymorphism (SNP) discovery in nonmodel organisms faced many challenges, often depending upon a targeted-gene approach and Sanger sequencing of many individuals. The advent of next-generation sequencing technologies has dramatically improved discovery, but validating and testing SNPs for use in population studies remain(More)
  • S R Narum, M Banks, +14 authors J C Garza
  • Molecular ecology
  • 2008
Single nucleotide polymorphisms (SNPs) are appealing genetic markers due to several beneficial attributes, but uncertainty remains about how many of these bi-allelic markers are necessary to have sufficient power to differentiate populations, a task now generally accomplished with highly polymorphic microsatellite markers. In this study, we tested the(More)
We examined the genetic population structure of chum salmon, Oncorhynchus keta, in the Pacific Rim using mitochondrial (mt) DNA analysis. Nucleotide sequence analysis of about 500 bp in the variable portion of the 5′ end of the mtDNA control region revealed 20 variable nucleotide sites, which defined 30 haplotypes of three genealogical clades (A, B, and C),(More)
We examined genetic variation at 21 polymorphic allozyme loci, 15 nuclear DNA loci, and mitochondrial DNA in four spawning populations of sockeye salmon (Oncorhynchus nerka) from Cook Inlet, Alaska, to test for differences in the patterns of divergence among different types of markers. We were specifically interested in testing the suggestion that natural(More)
Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using(More)
A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between(More)
Studies of the oceanic and near-shore distributions of Pacific salmon, whose migrations typically span thousands of kilometres, have become increasingly valuable in the presence of climate change, increasing hatchery production and potentially high rates of bycatch in offshore fisheries. Genetics data offer considerable insights into both the migratory(More)