Learn More
We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and(More)
Counterion atmospheres condensed onto charged biopolymers strongly affect their physical properties and biological functions, but have been difficult to quantify experimentally. Here, monovalent and divalent counterion atmospheres around DNA double helices in solution are probed using small-angle x-ray scattering techniques. Modulation of the ion scattering(More)
Time-resolved small-angle X-ray scattering (SAXS) with millisecond time-resolution reveals two discrete phases of global compaction upon Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. Electrostatic relaxation of the RNA occurs rapidly and dominates the first phase of compaction during which the observed radius of gyration (R(g)) decreases(More)
Many applications in pharmaceutical development, clinical diagnostics, and biological research demand rapid detection of multiple analytes (multiplexed detection) in a minimal volume. This need has led to the development of several novel array-based sensors. The most successful of these so far have been suspension arrays based on polystyrene beads. However,(More)
Large RNAs can collapse into compact conformations well before the stable formation of the tertiary contacts that define their final folds. This study identifies likely physical mechanisms driving these early compaction events in RNA folding. We have employed time-resolved small-angle X-ray scattering to monitor the fastest global shape changes of the(More)
We have investigated the energetics of DNA condensation by multivalent polyamine cations. Solution small angle x-ray scattering was used to monitor interactions between short 25 base pair dsDNA strands in the free supernatant DNA phase that coexists with the condensed DNA phase. Interestingly, when tetravalent spermine is used, significant inter-DNA(More)
A microfluidic mixer is applied to study the kinetics of calmodulin conformational changes upon Ca2+ binding. The device facilitates rapid, uniform mixing by decoupling hydrodynamic focusing from diffusive mixing and accesses time scales of tens of microseconds. The mixer is used in conjunction with multiphoton microscopy to examine the fast Ca2+-induced(More)
The competition of monovalent and divalent cations for proximity to negatively charged DNA is of biological importance and can provide strong constraints for theoretical treatments of polyelectrolytes. Resonant x-ray scattering experiments have allowed us to monitor the number and distribution of each cation in a mixed ion cloud around DNA. These(More)
Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg2+ ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As(More)
Cation-mediated RNA folding from extended to compact, biologically active conformations relies on a temporal balance of forces. The Mg2 +-mediated folding of the Tetrahymena thermophila ribozyme is characterized by rapid nonspecific collapse followed by tertiary-contact-induced compaction. This article focuses on an autonomously folding portion of the(More)