Learn More
Strong inward rectifier potassium (Kir2) channels are important in the control of cell excitability, and their functions are modulated by interactions with intracellular proteins. Here we identified a complex of scaffolding/trafficking proteins in brain that associate with Kir2.1, Kir2.2, and Kir2.3 channels. By using a combination of affinity interaction(More)
The ATP-sensitive potassium channel (K(ATP)) regulates insulin secretion in pancreatic beta cells. Loss of functional K(ATP) channels because of mutations in either the SUR1 or Kir6.2 channel subunit causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We investigated the molecular mechanism by which a single phenylalanine deletion in SUR1(More)
Sulfonylurea receptors (SURx) are multi-spanning transmembrane proteins of the ATP-binding cassette (ABC) family, which associate with Kir6.x to form ATP-sensitive potassium channels. Two models, with 13-17 transmembrane segments, have been proposed for SURx topologies. Recently, we demonstrated that the amino-terminal region of SUR1 contains 5(More)
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding(More)
Precise trafficking, localization, and activity of inward rectifier potassium Kir2 channels are important for shaping the electrical response of skeletal muscle. However, how coordinated trafficking occurs to target sites remains unclear. Kir2 channels are tetrameric assemblies of Kir2.x subunits. By immunocytochemistry we show that endogenous Kir2.1 and(More)
Inward rectifier K(+) channels (Kir) are a significant determinant of endothelial cell (EC) membrane potential, which plays an important role in endothelium-dependent vasodilatation. In the present study, several complementary strategies were applied to determine the Kir2 subunit composition of human aortic endothelial cells (HAECs). Expression levels of(More)
Liver hemodynamics is characterized by a dual venous and portal blood supply whose physiologic variations are particularly evident during digestion. In the normal subject portal blood flow is laminar with the left liver receiving the blood from the small intestine while the left liver is supplied by the blood from the spleen and colon. In pathologic(More)
BACKGROUND DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification. METHODOLOGY We modified the BJAB lymphoblastoma cell line to(More)
Oligosaccharides play significant roles in trafficking, folding, and sorting of membrane proteins. Sulfonylurea receptors (SURx), members of the ATP binding cassette family of proteins, associate with the inward rectifier Kir6.x to form ATP-sensitive potassium channels (K(ATP)). These channels are found on the plasma membrane in many tissues and play a(More)