Lisa M Utschig

Learn More
Isolated reaction centers (RCs) from Rhodobacter sphaeroides were found to bind Zn(II) stoichiometrically and reversibly in addition to the 1 equiv of non-heme Fe(II). Metal and EPR analyses confirm that Zn(II) is ligated to a binding site that is distinct from the Fe site. When Zn(II) is bound to this site, electron transfer between the quinones QA and QB(More)
Electron spin polarized electron paramagentic resonance (ESP EPR) spectra were obtained with deuterated iron-removed photosynthetic bacterial reaction centers (RCs) to specifically investigate the effect of the rate of primary charge separation, metal-site occupancy, and H-subunit content on the observed P865+QA- charge-separated state. Fe-removed and(More)
The structure of the secondary radical pair, P865(+)Q(A)-, in fully deuterated and Zn-substituted reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides R-26 has been determined by high-time resolution and high-field electron paramagnetic resonance (EPR). A computer analysis of quantum beat oscillations, observed in a two-dimensional Q-band(More)
Silver metal nanoparticle (NP) enhanced fluorescence is investigated in thin films of cyanobacterial Photosystem I trimer complexes (PSI) by correlating confocal laser scanning microscopy, dark-field imaging, and fluorescence lifetime measurements. PSI represents an interesting light-harvesting complex with a 20 nm diameter that is not uniformly contained(More)
Efficient charge separation occurring within membrane-bound reaction center proteins is the most important step of photosynthetic solar energy conversion. All reaction centers are classified into two types, I and II. X-ray crystal structures reveal that both types bind two symmetric membrane-spanning branches of potential electron-transfer cofactors.(More)
The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors(More)
Recently we reported the first observation of time-resolved (TR) high-frequency (HF) electron nuclear double resonance (ENDOR) of the transient charge separated state P865(+)Q(-)A in purple photosynthetic bacterial reaction centers (RC) (Poluektov, O. G., et al. J. Am. Chem. Soc. 2004, 126, 1644-1645). The high resolution and orientational selectivity of HF(More)
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon(More)
The coordination environments of two distinct metal sites on the bacterial photosynthetic reaction center (RC) protein were probed with pulsed electron paramagnetic resonance (EPR) spectroscopy. For these studies, Cu2+ was bound specifically to a surface site on native Fe2+-containing RCs from Rhodobacter sphaeroides R-26 and to the native non-heme Fe site(More)