Lisa M Jungbauer

Learn More
Very little is known about the conformation of polypeptides emerging from the ribosome during protein biosynthesis. Here, we explore the dynamics of ribosome-bound nascent polypeptides and proteins in Escherichia coli by dynamic fluorescence depolarization and assess the population of cotranslationally active chaperones trigger factor (TF) and DnaK. E. coli(More)
The labile nature of membranes and organelles poses serious challenges to in situ biomolecule characterization in intact cells. Cell-free in vitro systems provide an alternative promising medium for the expression and characterization of protein conformation and function in a biochemical context that bears several similarities to the cellular environment.(More)
Recent advances in basic research, medicine, and biotechnology provide great motivation for the development of analytical tools to probe the behavior of target biomolecules in complex biological environments. Cell-free transcription-translation systems are an attractive medium for such studies, because they mimic several biochemical features of living(More)
This work focuses on the experimental analysis of the time-course of protein expression in a cell-free system, in conjunction with the development of a computational model, denoted as progressive chain buildup (PCB), able to simulate translation kinetics and product formation as a function of starting reactant concentrations. Translation of the gene(More)
The direct observation of specific biochemical events in living cells is now possible as a result of combined advances in molecular biology and fluorescence microscopy. By genetically encoding the source of a unique spectroscopic signal, target proteins can be selectively detected within the complex cellular environment, with limited interference from(More)
  • 1