Lisa J. Lapidus

Learn More
Recent work on α-synuclein has shown that aggregation is controlled kinetically by the rate of reconfiguration of the unstructured chain, such that the faster the reconfiguration, the slower the aggregation. In this work we investigate this relationship by examining α-synuclein in the presence of a small molecular tweezer, CLR01, which binds selectively to(More)
We describe a new, time-apertured photon correlation method for resolving the transition time between two states of RNA in folding--i.e., the time of the transition between states rather than the time spent in each state. Single molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy are used to obtain these measurements.(More)
A crucial parameter in many theories of protein folding is the rate of diffusion over the energy landscape. Using a microfluidic mixer we have observed the rate of intramolecular diffusion within the unfolded B1 domain of protein L before it folds. The diffusion-limited rate of intramolecular contact is about 20 times slower than the rate in 6 M GdnHCl, and(More)
The formation of specific intramolecular contacts has been studied under a range of denaturing conditions in single domains of the immunoglobulin-binding proteins L and G. Although they share no significant sequence similarity and have dissimilar folding pathways, the two domains have a similar native fold. Our measurements show that the rates of forming(More)
While there have been impressive advances in understanding protein folding over the past few decades, we are still far from the goal of solving the protein folding problem: predicting the folding pathway and final structure entirely from the amino acid sequence. One reason for this shortcoming may be the lack of understanding of the complexity of the(More)
The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein. Conventional stopped-flow mixers have allowed measurement of folding(More)
  • 1