Lisa J. Burton

  • Citations Per Year
Learn More
A mobile system's maneuverability describes the scale and span of the velocities with which it can move. In this paper, we present a new geometric framework for describing the maneuverability of kinematic locomoting systems, inspired by the manipulability analysis of robotic arms. This framework describes both the local maneuverability in the neighborhood(More)
We present the results of a recent collaboration between scientists, engineers and chefs. Two particular devices are developed, both inspired by natural phenomena reliant on surface tension. The cocktail boat is a drink accessory, a self-propelled edible boat powered by alcohol-induced surface tension gradients, whose propulsion mechanism is analogous to(More)
In this thesis, we conduct research toward understanding coupled physics-biology processes in ocean straits. Our focus is on new analytical studies and higher-order simulations of idealized dynamics that are relevant to generic biological processes. The details of coupled physics-biology models are reviewed and an in-depth global equilibrium and local(More)
Neuro-sensory systems are critical for integrating environmental stimuli and providing a framework for resolving decision-making tasks. Remarkably, the molecular mechanisms mediating transduction of sensory information in neurons are also found in other cellular tissues, including sperm. One mechanism facilitating such behavior is a sperm’s ability to(More)
We describe the inspiration, development, and deployment of a novel cocktail device modeled after a class of water-walking insects. Semi-aquatic insects like Microvelia and Velia evade predators by releasing a surfactant that quickly propels them across the water. We exploit an analogous propulsion mechanism in the design of an edible cocktail boat. We(More)
Today’s situational awareness requirements in the undersea environment present severe challenges for acoustic communication systems. Acoustic propagation through the ocean environment severely limits the capacity of existing underwater communication systems. Specifically, the presence of internal waves coupled with the ocean sound channel creates a(More)
Related Articles Capillary-driven flow induced by a stepped perturbation atop a viscous film Phys. Fluids 24, 102111 (2012) Periodic dripping dynamics in a co-flowing liquid-liquid system Phys. Fluids 24, 093101 (2012) Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers Phys. Fluids 24, 092101 (2012) A(More)
  • 1