Lisa Elane Goehler

Learn More
The immune system operates as a diffuse sensory system, detecting the presence of specific chemical constituents associated with dangerous micro-organisms, and then signalling the brain. In this way, immunosensation constitutes a chemosensory system. Several submodalities of this sensory system function as pathways conveying immune-related information, and(More)
Agents which induce symptoms of illness, such as lipopolysaccharide (LPS), cause diverse effects including hyperalgesia. While previous studies have examined central pathways mediating LPS hyperalgesia, the initial steps in activating this system remain unknown. Since LPS induces the release of various cytokines and eicosinoids from immune cells, the(More)
Interleukin-1 beta (IL-1 beta), a cytokine released by activated immune cells, elicits various illness symptoms including hyperthermia. Previous hypotheses to account for these actions have focused on blood-borne IL-1 beta exerting its effects directly at the level of the brain. However, recent behavioral and physiological evidence suggest that IL-1 beta(More)
We have previously demonstrated that illness-inducing agents such as lithium chloride (LiCl) and the bacterial cell wall endotoxin lipopolysaccharide (LPS) produce hyperalgesia on diverse pain measures. The present series of studies attempted to identify the neurocircuitry mediating these effects. These studies have demonstrated that illness-inducing agents(More)
It is becoming well accepted that products of the immune system (cytokines) can signal the brain that infection has occurred. This cytokine-to-brain communication can result in marked alterations in brain function and behavior. This review examines alternative mechanisms that have been proposed to explain how such immune products can reach the brain via the(More)
Peripheral interleukin-1 beta (IL-beta) and inflammatory stimuli that induce the synthesis and release of IL-1 beta produce a variety of central nervous system responses. Most proposals designed to explain how peripheral IL-1 beta influences the CNS have focused on blood-borne routes of communication. We will review data that indicate that at least some of(More)
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are(More)
It has recently become accepted that the activated immune system communicates to brain via release of pro-inflammatory cytokines. This review examines the possibility that pro-inflammatory cytokines (interleukins and/or tumor necrosis factor) mediate a variety of commonly studied hyperalgesic states. We will first briefly review basic immune responses and(More)
There is now evidence that depression, as characterized by melancholic symptoms, anxiety, and fatigue and somatic (F&S) symptoms, is the clinical expression of peripheral cell-mediated activation, inflammation and induction of oxidative and nitrosative stress (IO&NS) pathways and of central microglial activation, decreased neurogenesis and increased(More)
It has become increasingly evident that bidirectional ("top-down and bottom-up") interactions between the brain and peripheral tissues, including the cardiovascular and immune systems, contribute to both mental and physical health. Therapies directed toward addressing functional links between mind/brain and body may be particularly effective in treating the(More)