Lisa E Schwanz

Learn More
Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population(More)
Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour(More)
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over(More)
Despite decades of interest, adaptive explanations for biased offspring sex ratios in mammals remain contentious, largely because direct tests of the underlying fitness assumptions of adaptive hypotheses are rarely conducted. These tests are complicated by the difficulty of manipulating offspring sex prior to significant maternal investment owing to the(More)
Parasitized animals may alter their life histories to minimize the costs of parasitism. Organisms are predicted to decrease investment in current reproduction when parasitism has the greatest impact on current reproductive ability. In contrast, if parasitism decreases residual reproductive value, hosts should increase current reproductive investment,(More)
Facultative investment in offspring sex is related to maternal condition in many organisms. In mammals, empirical support for condition-dependent sex allocation is equivocal, and there is some doubt as to theoretical expectations. Much theory has been developed to make predictions for condition-dependent sex ratios in populations with discrete generations.(More)
The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on(More)
An increasing number of publishers and funding agencies require public data archiving (PDA) in open-access databases. PDA has obvious group benefits for the scientific community, but many researchers are reluctant to share their data publicly because of real or perceived individual costs. Improving participation in PDA will require lowering costs and/or(More)
Quantifying the degree to which sex determination depends on the environment can yield insight into the evolution, ecological dynamics, and functional aspects of sex determination. In temperature-dependent sex determination (TSD), theory often predicts a complete dependence of sex on temperature, with a switch-like reaction norm. However, empirical data(More)
1. Pathogens and immune challenges can induce changes in host phenotype in ways that indirectly impact important community interactions, including those that affect host-pathogen interactions. 2. To explore host behavioural response to immune challenge, we exposed wild white-footed mice (Peromyscus leucopus) to an immunogen from an endemic, zoonotic(More)