Learn More
Mutation of CCM2 predisposes individuals to cerebral cavernous malformations, vascular abnormalities that cause seizures and hemorrhagic stroke. CCM2 has been proposed to regulate the activity of RhoA for maintenance of vascular integrity. Herein, we define a novel mechanism where the CCM2 phosphotyrosine binding (PTB) domain binds the ubiquitin ligase (E3)(More)
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual(More)
Alveolar rhabdomyosarcoma (aRMS) is an aggressive sarcoma of skeletal muscle characterized by expression of the paired box 3-forkhead box protein O1 (PAX3-FOXO1) fusion oncogene. Despite its discovery nearly two decades ago, the mechanisms by which PAX3-FOXO1 drives tumor development are not well characterized. Previously, we reported that PAX3-FOXO1(More)
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected(More)
PURPOSE Rhabdomyosarcoma (RMS) is a malignancy with features of skeletal muscle, and the most common soft tissue sarcoma of childhood. Survival for high-risk groups is approximately 30% at 5 years and there are no durable therapies tailored to its genetic aberrations. During genetic modeling of the common RMS variants, embryonal RMS (eRMS) and alveolar RMS(More)
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas of childhood and adolescence. To date, there are no effective treatments that target the genetic abnormalities in RMS, and current treatment options for high-risk groups are not adequate. Over the past two decades, research into the molecular mechanisms of RMS has identified key genes and(More)
Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic(More)
The two major types of rhabdomyosarcoma (RMS) are predominantly diagnosed in children, namely embryonal (ERMS) and alveolar (ARMS) RMS, and patients are treated with cytotoxic drugs, which results in multiple toxic side effects later in life. Therefore, development of innovative chemotherapeutic strategies is imperative, and a recent genomic analysis(More)
PURPOSE Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically(More)
Purpose: Rhabdomyosarcoma (RMS) is a malignancy with features of skeletal muscle, and the most common soft tissue sarcoma of childhood. Survival for high-risk groups is approximately 30% at 5 years and there are no durable therapies tailored to its genetic aberrations. During genetic modeling of the common RMS variants, embryonal RMS (eRMS) and alveolar RMS(More)