Lisa Demeyer

Learn More
The zero divisor graph of a commutative semigroup with zero is a graph whose vertices are the nonzero zero divisors of the semigroup, with two distinct vertices joined by an edge in case their product in the semigroup is zero. We continue the study of this construction and its extension to a simplicial complex. This article continues the study of the zero(More)
Let S be a commutative semigroup with zero. The zero divisor graph associated to S, denoted Γ(S) is the graph whose vertices are the nonzero zero divisors of S and two vertices are adjacent in case their product in the semigroup is zero. There are many known results on the possible shape of such graphs. We study the converse problem. Namely, given a graph G(More)
  • 1