Learn More
Networks of brain regions having synchronized fluctuations of the blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) time-series at rest, or "resting state networks" (RSNs), are emerging as a basis for understanding intrinsic brain activity. RSNs are topographically consistent with activity-related networks subserving sensory,(More)
BACKGROUND Brain dysfunction in prefrontal cortex (PFC) and dorsal striatum (DS) contributes to habitual drug use. These regions are constituents of brain networks thought to be involved in drug addiction. To investigate whether networks containing these regions differ between nicotine dependent female smokers and age-matched female non-smokers, we employed(More)
The authors measured event-related potentials with a craving manipulation to investigate the neural correlates of drug cue reactivity in 13 adolescents who are cannabis dependent (CD; ages 14-17). The P300 responses to marijuana (MJ) pictures (MJ-P300) and control pictures (C-P300) were assessed after handling neutral objects and again after handling MJ(More)
Event-related functional MRI (ER-fMRI) based on both blood oxygen level-dependent (BOLD) contrast and perfusion contrast has been recently developed to study human brain activation due to brief stimulation. In this report, both BOLD- and perfusion-based ER-fMRI were directly compared using repeated single-trial, short visual stimulation (1 sec) in six human(More)
UNLABELLED Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential(More)
The purpose of this report is to implement novel modifications to overcome the limitations of an existing algorithm for estimating the local statistical noise in a positron emission tomography (PET) image without performing repeated measures. The original algorithm is based on a modification of the filtered back-projection algorithm that allows the variance(More)
Whole body hyperthermia may produce vasodialation, nausea, and altered cognitive function. Animal research has identified brain regions that have important roles in thermoregulation. However, differences in both the cognitive and sweating abilities of humans and animals implicate the need for human research. Positron emission tomography (PET) was used to(More)
A technique for calculating the uncertainty in the location of an activation site in a PET image, without performing repeated measures, is presented. With the development of new fMRI methods for measuring cerebral hemodynamics, demonstration of the efficacy of these techniques will be critical to establish clinical utility. Comparisons with PET are a(More)
Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain(More)
Confounding noise in BOLD fMRI data arises primarily from fluctuations in blood flow and oxygenation due to cardiac and respiratory effects, spontaneous low frequency oscillations (LFO) in arterial pressure, and non-task related neural activity. Cardiac noise is particularly problematic, as the low sampling frequency of BOLD fMRI ensures that these effects(More)