Learn More
Description of the genetic structure of malaria parasite populations is central to an understanding of the spread of multiple-locus drug and vaccine resistance. The Plasmodium falciparum mating patterns from madang, Papua New Guinea, where intense transmission of malaria occurs, are described here. A high degree of inbreeding occurs in the absence of(More)
Standard techniques for counting parasites are often time-consuming, difficult and inaccurate, and occasionally unpleasant. Real-time quantitative polymerase chain reaction has recently been applied to parasitology, specifically Plasmodium, Toxoplasma, Leishmania and Neospora. These techniques are truly quantitative, give results over a range of 6-7 orders(More)
Malaria parasites are capable of modulating the diversion of resources from asexual growth to the production of stages infective to mosquitoes (gametocytes). Increased rates of gametocytogenesis appear to be a general response to stress, both naturally encountered and novel. We have previously reported earlier and greater gametocytogenesis in response to(More)
Recrudescent Plasmodium falciparum parasites were sampled from 108 children taking part in a drug efficacy trial in Gabon. A finger-prick blood sample was taken from each child before treatment, and a post-treatment sample taken of the recrudescent parasites. Sample deoxyribonucleic acid was amplified by the polymerase chain reaction using primers specific(More)
The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen-activated protein kinase (MAPK) homologues, pfmap-1 and pfmap-2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model(More)
Plasmodium falciparum gametocytes grown in vitro were fed through membrane feeders to laboratory-reared Anopheles stephensi mosquitoes. Intact midguts, including entire bloodmeal contents, were removed between 24 and 48 h post-bloodfeeding. Giemsa-stained histological sections were prepared from the midguts and examined by light microscopy. Contrary to(More)
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the(More)
Renal function is essential to maintain homeostasis. This is particularly significant for insects that undergo complete metamorphosis; larval mosquitoes must survive a freshwater habitat whereas adults are terrestrial, and mature females must maintain ion and fluid homeostasis after blood feeding. To investigate the physiological adaptations required for(More)
Transmission-blocking vaccines prevent the development of Plasmodium parasite within the mosquito vector, thereby thwarting the spread of malaria through a community. The gold standard for determining the efficacy of a transmission-blocking vaccine is the standard membrane feeding assay. This assay requires the dissection of mosquitoes and microscopic(More)