Lisa A Peterson

Learn More
The tobacco-specific nitrosamine, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone, is activated to lung DNA methylating and pyridyloxobutylating intermediates. It is likely that both pathways play a role in lung tumor initiation by this nitrosamine. Previous studies indicated that O(6)-methylguanine (O(6)-mG) persistence is critical for lung tumor formation(More)
Furan is a liver carcinogen and toxicant. Furan is oxidized to the reactive dialdehyde, cis-2-butene-1,4-dial, by microsomal enzymes. This reactive metabolite readily reacts with glutathione nonenzymatically to form conjugates. A high-performance liquid chromatography-electrochemical method for the detection of cis-2-butene-1,4-dial-glutathione (GSH)(More)
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL(More)
Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation,(More)
OBJECTIVE The objective of the study was to examine the relationship between compulsive buying (CB), depression, materialism, and excessive Internet use. METHODS An online survey of 387 consumers was conducted including questions about demographics and shopping venues, the Compulsive Buying Scale, the Patient Health Questionnaire Depression Scale, the(More)
The tobacco specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent pulmonary carcinogen, both methylates and pyridyloxobutylates DNA. Both reaction pathways generate promutagenic O6-alkylguanine adducts. These adducts, O6-methylguanine (O6-mG) and O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG), are repaired by(More)
Furan is toxic and carcinogenic in rodents. Because of the large potential for human exposure, furan is classified as a possible human carcinogen. The detailed mechanism by which furan causes toxicity and cancer is not yet known. Since furan toxicity requires cytochrome P450-catalyzed oxidation of furan, we have characterized the urinary and hepatocyte(More)
Tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine, are considered to be human carcinogens. Both compounds are metabolized to pyridyloxobutylating intermediates that react with DNA to form adducts such as 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine, O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine,(More)
Furan is a toxic and carcinogenic compound used in industry and commonly found in the environment. The mechanism of furan's carcinogenesis is not well-understood and may involve both genotoxic and nongenotoxic pathways. Furan undergoes oxidation by cytochrome P450 to cis-2-butene-1,4-dial, which is thought to mediate furan's toxic effects. Consistently,(More)
Furan is a hepatic toxicant and carcinogen in rodents. Its microsomal metabolite, cis-2-butene-1,4-dial, is mutagenic in the Ames assay. Consistent with this observation, cis-2-butene-1,4-dial reacts with 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine to form diastereomeric adducts. HPLC analysis indicated that the rate of reaction with(More)