Learn More
Preferential brain white matter injury and hypomyelination induced by intracerebral administration of the endotoxin lipopolysaccharide (LPS) in the neonatal rat brain has been characterized as associated with the activation of microglia. To examine whether inhibition of microglial activation might provide protection against LPS-induced brain injury and(More)
Bilateral carotid artery occlusion (BCAO) followed by exposure to a hypoxic condition (8% oxygen for 10 or 15 min) was performed in postnatal day 4 SD rats. Brain injury and myelination changes were examined on postnatal day 21 (P21) and tests for neurobehavioral toxicity were performed from P3 to P21. BCAO followed by 10 or 15 min hypoxic insult resulted(More)
Previous studies from our laboratory have indicated possible interactions between opioidergic and dopaminergic neurons in the central nervous system. In this study, apomorphine-induced locomotor activity and the D1 and D2 subtype dopamine receptor binding were examined in mice lacking the mu-opioid receptor genes. The ambulatory time, vertical time and(More)
To determine whether intranasal administration (iN) of recombinant human insulin-like growth factor-1 (rhIGF-1) provides neuroprotection to the neonatal rat brain following cerebral hypoxia-ischemia (HI), two doses of rhIGF-1 (50 microg at a 1 h interval) were infused into the right naris of postnatal day 7 (P7) rat pups with or without a prior HI insult(More)
Proinflammatory cytokine-mediated injury to oligodendrocyte progenitor cells (OPCs) has been proposed as a cause of periventricular leukomalacia (PVL), the most common brain injury found in preterm infants. Preventing death of OPCs is a potential strategy to prevent or treat PVL. In the current study, we utilized an in vitro cell culture system to(More)
To investigate if insulin-like growth factor-1 (IGF-1) provides neuroprotection to oligodendrocyte progenitor cells (OPCs) following cerebral hypoxia-ischemia, a previously developed neonatal rat model of white matter damage was used in this study. Postnatal day 4 (P4) SD rat pups were subjected to bilateral common carotid artery ligation, followed by(More)
The opioid analgesic, butorphanol (17-cyclobutylmethyl-3,14-dihydroxymorphinan) tartrate is a prototypical agonist-antagonist opioid analgesic agent whose potential for abuse has been the cause of litigation in the United States. With a published affinity for opioid receptors in vitro of 1:4:25 (mu:delta:kappa), the relative contribution of actions at each(More)
Anatomical evidence indicates that cholinergic and opioidergic systems are co-localized and acting on the same neurons. However, the regulatory mechanisms between cholinergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are compensatory changes of acetylcholinesterase activity and cholinergic(More)
To investigate whether minocycline provides long-lasting protection against neonatal hypoxia-ischemia-induced brain injury and neurobehavioral deficits, minocycline was administered intraperitoneally in postnatal day 4 Sprague-Dawley rats subjected to bilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen for 15 min). Brain injury and(More)
An increasing amount of data show that central inflammation contributes to many debilitating diseases and produces spontaneous pain and hyperalgesia (an increased sensitivity to painful stimuli), and these processes may be associated with the production of proinflammatory cytokines by activated microglia. In the present study, we demonstrate that neonatal(More)