Learn More
The interaction of proteins with DNA recognition motifs regulates a number of fundamental biological processes, including transcription. To understand these processes, we need to know which motifs are present in a sequence and which factors bind to them. We describe a method to screen a set of DNA sequences against a precompiled library of motifs, and(More)
DNA and chromosome damages in peripheral blood lymphocytes were evaluated in 151 workers occupationally exposed to formaldehyde (FA) and 112 non-FA exposed controls. The effects of polymorphisms in three glutathione-S-transferase (GSTs) genes on the DNA and chromosome damages were assessed as well. Alkaline comet assay and cytokinesis-block micronucleus(More)
The function of striatal adenosine A(2A) receptors (A(2A)Rs) is well recognized because of their high expression levels and the documented antagonistic interaction between A(2A)Rs and dopamine D(2) receptors in the striatum. However, the role of extrastriatal A(2A)Rs in modulating psychomotor activity is largely unexplored because of the low level of(More)
The adenosine A(2A) receptor has recently emerged as a leading non-dopaminergic therapeutic target for Parkinson's disease, largely due to the restricted distribution of the receptor in the striatum and the profound interaction between adenosine and dopamine receptors in brain. Two lines of research in particular have demonstrated the promise of the A(2A)(More)
Inactivation of the adenosine A(2A) receptor (A(2A)R) consistently protects against ischemic brain injury and other neural insults, but the relative contribution of A(2A)Rs on peripheral inflammatory cells versus A(2A)Rs expressed on neurons and glia is unknown. We created a chimeric mouse model in which A(2A)Rs on bone marrow-derived cells (BMDCs) were(More)
Caffeine is well known for its complex pharmacological actions, in part reflecting the multiple molecular targets of caffeine. The adenosine receptors are the primary extracellular targets of caffeine. Since caffeine has similar affinity for several adenosine receptors, it has been difficult to determine which receptor subtypes mediate caffeine's effects(More)
OBJECTIVE To investigate whether the motor and neuroprotective effects of adenosine A(2A) receptor (A(2A)R) antagonists are mediated by distinct cell types in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. METHODS We used the forebrain A(2A)R knock-out mice coupled with flow cytometric analyses and(More)
The adenosine A2A receptor (A2AR) is highly expressed in the striatum, where it modulates motor and emotional behaviors. We used both microarray and bioinformatics analyses to compare gene expression profiles by genetic and pharmacological inactivation of A2AR and inferred an A2AR-controlled transcription network in the mouse striatum. A comparison between(More)
Repeated treatment with the psychostimulant amphetamine produces behavioral sensitization that may represent the neural adaptations underlying some features of psychosis and addiction in humans. In the present study we investigated the role of adenosine A(2A) receptors in psychostimulant-induced locomotor sensitization using an A(2A) receptor knockout(More)
The adenosine A(2A) receptor (A(2A)R) is abundantly expressed in brain and emerging as an important therapeutic target for Parkinson's disease and potentially other neuropsychiatric disorders. To understand the molecular mechanisms of A(2A)R gene expression, we have characterized the genomic organization of the mouse and human A(2A)R genes by molecular and(More)