Learn More
Transposons are DNA sequences that encode functions that promote their movement to new locations in the genome. If unregulated, such movement could potentially insert additional DNA into genes, thereby disrupting gene expression and compromising an organism's viability. Transposable elements are classified by their transposition mechanisms and by the(More)
DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive(More)
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when(More)
Mobile elements and their inactive remnants account for large proportions of most eukaryotic genomes, where they have had central roles in genome evolution. Over 50 years ago, McClintock reported a form of stress-induced genome instability in maize in which discrete DNA segments move between chromosomal locations. Our current mechanistic understanding of(More)
We report the isolation and partial characterization of three new mutants of Streptomyces coelicolor that are defective in morphogenesis and antibiotic production. The genes identified by the mutations were located and cloned by using a combination of Tn5 in vitro mutagenesis, cotransformation, and genetic complementation. Mutant SE69 produces lower amounts(More)
We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette(More)
Chromosome structure and function are influenced by transposable elements, which are mobile DNA segments that can move from place to place. hAT elements are a superfamily of DNA cut and paste elements that move by excision and integration. We have characterized two hAT elements, TcBuster and Space Invaders (SPIN), that are members of a recently described(More)
Pyrethroids and the metabolites have been frequently observed in the environment. Animal data suggests that pyrethroids can induce adverse effect on the cardiovascular system but there are no human studies examining pyrethoids exposure as a risk for coronary heart disease (CHD). We analyzed three nonspecific pyrethroids metabolites in urine and studied the(More)
  • 1