Learn More
Catechins (flavan-3-ols), the most important secondary metabolites in the tea plant, have positive effects on human health and are crucial in defense against pathogens of the tea plant. The aim of this study was to elucidate the biosynthetic pathway of galloylated catechins in the tea plant. The results suggested that galloylated catechins were(More)
Histochemical staining using vanillin-HCl is a potential tool to identify the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze). Using this technique revealed that catechins existed ubiquitously in all inspected tissues in young tea leaf, but the distribution was concentrated in the vascular bundle and palisade(More)
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were(More)
R2R3-MYB, bHLH, and WD40 proteins have been shown to control multiple enzymatic steps in the biosynthetic pathway responsible for the production of flavonoids, important secondary metabolites in Camellia sinensis. Few related transcription factor genes have been documented. The presence of R2R3-MYB, bHLH, and WD40 were statistically and bioinformatically(More)
Flavonoid 3′,5′-hydroxylase (F3′5′H), an important branch point enzyme in tea plant flavan-3-ol synthesis, belongs to the CYP75A subfamily and catalyzes the conversion of flavones, flavanones, dihydroflavonols and flavonols into 3′,4′,5′-hydroxylated derivatives. However, whether B-ring hydroxylation occurs at the level of flavanones and/or(More)
OBJECTIVE To study changes of tumor associated carbohydrate antigen (TACAs) expression and mRNA levels for tumor associated glycosyltransferases, and assess subcellular localizations of N-acetyl galactosyltransferases (GalNAc-Ts) in the K562 leukemia cell line after imatinib treatment. METHODS RT-PCR was performed to analyze the expression of(More)
CONTEXT Heart failure (HF) is a progressive deterioration in heart function associated with overactivity of the sympathetic nervous system. Elevated sympathetic nervous system activity down regulates the β-adrenergic signal system, suppressing β-adrenoceptors (β-ARs)-mediated contractile support in the failing heart. OBJECTIVE We investigated the effects(More)
To investigate the molecular mechanisms of lipid-lowering drug, Rhizoma Curcumae Longae, we treated the mouse macrophages with curcumin, which was purified from the ethanol extraction of Rhizoma Curcumae Longae. The LDL receptors expressed in the macrophages were determined by ELISA, FLISA and assay of LDL uptake. Here for the first time, we found that(More)
Protein disulfide isomerase (PDI) plays a key role in protein folding by catalyzing rearrangements of disulfide bonds in substrate proteins following their synthesis in eukaryotic cells. Besides its major role in the processing and maturation of secretory proteins in the endoplasmic reticulum, this enzyme and its homologs have been implicated in multiple(More)
OBJECTIVE Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. RESEARCH DESIGN AND METHODS Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the(More)