Lionel Bringoux

Learn More
We investigated the effects of whole body tilt and lifting the arm against gravity on perceptual estimates of the Gravity-Referenced Eye Level (GREL), which corresponds to the subjective earth-referenced horizon. The results showed that the perceived GREL was influenced by body tilt, that is, lowered with forward tilt and elevated with backward tilt of the(More)
This study investigated the contribution of otolithic and somesthetic inputs in the perception of body orientation when pitching at very slow velocities. In Experiment 1, the subjects' task was to indicate their subjective postural vertical, in two different conditions of body restriction, starting from different angles of body tilt. In the "strapped"(More)
Previous studies have shown that the perception of the earth-based visual horizon, also named Gravity Referenced Eye Level (GREL), is modified by body tilt around a trans-ocular axis. Here, we investigated whether estimates of the elevation of a luminous horizontal line presented on a screen in otherwise darkness and estimates of the possibility of passing(More)
The purpose of this study was to investigate how experts in motor skills requiring a fine postural control perceive their body orientation with few gravity based sensory cues. In Experiment 1, expert gymnasts and controls had to detect their body tilt when pitching at a velocity of 0.05 deg.s(-1), in two conditions of body restriction (strapped and body(More)
Because our environment and our body can change from time to time, the efficiency of human motor behavior relies on the updating of the neural processes transforming intentions into actions. Adaptation to the context critically depends on sensory feedback such as vision, touch or hearing. Although proprioception is not commonly listed as one of the main(More)
Seated observers requested to detect low-velocity passive rotations show a high motion-detection threshold. However, when standing on a slowly rotating platform, their equilibrium is preserved, suggesting that cognitive sensing and sensorimotor reactions do not share the same central processes. The present experiments investigated the ability of observers(More)
UNLABELLED Human activities often involve sensing body orientation using cues from gravity. Astronauts in microgravity are deprived of those cues and may have difficulty with certain tasks. We theorized that experience in microgravity combined with mechanically induced pressure under the feet (foot pressure) would improve the accuracy of a subject's(More)
A particular affordance was used as a potential candidate for behavioral assessment of physical presence in virtual environments. The subjects’ task was to walk through a virtual aperture of variable widths. In the case of presence, the subjects’ body orientation, while walking, was hypothesized to be adapted to the width of the aperture and to their own(More)
Accurate control of grip force during object manipulation is necessary to prevent the object from slipping, especially to compensate for the action of gravitational and inertial forces resulting from hand/object motion. The goal of the current study was to assess whether the control of grip force was influenced by visually induced self-motion (i.e.,(More)
Numerous studies highlighted the influence of a tilted visual frame on the perception of the visual vertical ('rod-and-frame effect' or RFE). Here, we investigated whether this influence can be modified in a virtual immersive environment (CAVE-like) by the structure of the visual scene and by the adjustment mode allowing visual or visuo-kinaesthetic control(More)