Learn More
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain(More)
The brain and body respond to potential and actual stressful events by activating hormonal and neural mediators and modifying behaviors to adapt. Such responses help maintain physiological stability ("allostasis"). When behavioral or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive ("allostatic(More)
The ability to predict the likelihood of an aversive event is an important adaptive capacity. Certainty and uncertainty regarding pain cause different adaptive behavior, emotional states, attentional focus, and perceptual changes. Recent functional neuroimaging studies indicate that certain and uncertain expectation are mediated by different neural pathways(More)
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new(More)
We used functional magnetic resonance imaging (fMRI) to determine whether similar brain regions activate during noxious hot and cold stimulation. Six male subjects underwent whole brain fMRI during phasic delivery of noxious hot (46 degrees C) and noxious cold (5 degrees C) stimulation to the dorsum of the left hand. Mid-brain regions activated included(More)
Complex regional pain syndrome (CRPS) in paediatric patients is clinically distinct from the adult condition in which there is often complete resolution of its signs and symptoms within several months to a few years. The ability to compare the symptomatic and asymptomatic condition in the same individuals makes this population interesting for the(More)
Pain and relief are at opposite ends of the reward-aversion continuum. Studying them provides an opportunity to evaluate dynamic changes in brain activity in reward-aversion pathways as measured by functional magnetic resonance imaging (fMRI). Of particular interest is the nucleus accumbens (NAc), a brain substrate known to be involved in reward-aversion(More)
Although cerebellar alterations have been consistently noted in the addiction literature, the pathophysiology of this link remains unclear. The cerebellum is commonly classified as a motor structure, but human functional neuroimaging along with clinical observations in cerebellar stroke patients and anatomical tract tracing in non-human primates suggests(More)
A typical fMRI data analysis proceeds via the generalized linear model (GLM) with Gaussian noise using a model based on the experimental paradigm. This analysis ultimately results in the production of z-statistic images corresponding to the contrasts of interest. Thresholding such z-statistic images at uncorrected thresholds suitable for testing activation(More)
Imaging pain pathways in rats offers a tool to investigate CNS systems in acute and chronic rodent models of pain, neural plasticity associated with the latter, and the opportunity to evaluate pharmacological effects of analgesics on these systems. Furthermore, the evaluation of CNS circuits (e.g., sensory, emotional, endogenous analgesic) offers the(More)