Learn More
The ability to predict the likelihood of an aversive event is an important adaptive capacity. Certainty and uncertainty regarding pain cause different adaptive behavior, emotional states, attentional focus, and perceptual changes. Recent functional neuroimaging studies indicate that certain and uncertain expectation are mediated by different neural pathways(More)
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain(More)
A typical fMRI data analysis proceeds via the generalized linear model (GLM) with Gaussian noise using a model based on the experimental paradigm. This analysis ultimately results in the production of z-statistic images corresponding to the contrasts of interest. Thresholding such z-statistic images at uncorrected thresholds suitable for testing activation(More)
Using functional magnetic resonance imaging (fMRI), we observed that noxious thermal stimuli (46 degrees C) produce significant signal change in putative reward circuitry as well as in classic pain circuitry. Increases in signal were observed in the sublenticular extended amygdala of the basal forebrain (SLEA) and the ventral tegmentum/periaqueductal gray(More)
The cerebellum is reliably activated during both acute and chronic pain conditions, but it is unclear whether the response to aversive painful stimuli can be generalized to other aversive stimuli. We hypothesized that cerebellar activation during pain reflects higher-level encoding of aversive stimuli. We used functional magnetic resonance imaging (fMRI) to(More)
The basal ganglia (BG) are composed of several nuclei involved in neural processing related to the execution of motor, cognitive and emotional activities. Preclinical and clinical data have implicated a role for these structures in pain processing. Recently neuroimaging has added important information on BG activation in conditions of acute pain, chronic(More)
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new(More)
OBJECTIVE To examine biochemical differences in the anterior cingulate cortex (ACC) and insula during the interictal phase of migraine patients. We hypothesized that there may be differences in levels of excitatory amino acid neurotransmitters and/or their derivatives in migraine group based on their increased sensitivity to pain. METHODS 2D J-resolved(More)
Imaging pain pathways in rats offers a tool to investigate CNS systems in acute and chronic rodent models of pain, neural plasticity associated with the latter, and the opportunity to evaluate pharmacological effects of analgesics on these systems. Furthermore, the evaluation of CNS circuits (e.g., sensory, emotional, endogenous analgesic) offers the(More)
Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient(More)