Learn More
The brain and body respond to potential and actual stressful events by activating hormonal and neural mediators and modifying behaviors to adapt. Such responses help maintain physiological stability ("allostasis"). When behavioral or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive ("allostatic(More)
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain(More)
The ability to predict the likelihood of an aversive event is an important adaptive capacity. Certainty and uncertainty regarding pain cause different adaptive behavior, emotional states, attentional focus, and perceptual changes. Recent functional neuroimaging studies indicate that certain and uncertain expectation are mediated by different neural pathways(More)
Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new(More)
We used functional magnetic resonance imaging (fMRI) to determine whether similar brain regions activate during noxious hot and cold stimulation. Six male subjects underwent whole brain fMRI during phasic delivery of noxious hot (46 degrees C) and noxious cold (5 degrees C) stimulation to the dorsum of the left hand. Mid-brain regions activated included(More)
Pain and relief are at opposite ends of the reward-aversion continuum. Studying them provides an opportunity to evaluate dynamic changes in brain activity in reward-aversion pathways as measured by functional magnetic resonance imaging (fMRI). Of particular interest is the nucleus accumbens (NAc), a brain substrate known to be involved in reward-aversion(More)
Although cerebellar alterations have been consistently noted in the addiction literature, the pathophysiology of this link remains unclear. The cerebellum is commonly classified as a motor structure, but human functional neuroimaging along with clinical observations in cerebellar stroke patients and anatomical tract tracing in non-human primates suggests(More)
The habenula is a small bilateral structure in the posterior-medial aspect of the dorsal thalamus that has been implicated in a remarkably wide range of behaviors including olfaction, ingestion, mating, endocrine and reward function, pain and analgesia. Afferent connections from forebrain structures send inputs to the lateral and medial habenula where(More)
A typical fMRI data analysis proceeds via the generalized linear model (GLM) with Gaussian noise using a model based on the experimental paradigm. This analysis ultimately results in the production of z-statistic images corresponding to the contrasts of interest. Thresholding such z-statistic images at uncorrected thresholds suitable for testing activation(More)
The habenula, located in the posterior thalamus, is implicated in a wide array of functions. Animal anatomical studies have indicated that the structure receives inputs from a number of brain regions (e.g., frontal areas, hypothalamic, basal ganglia) and sends efferent connections predominantly to the brain stem (e.g., periaqueductal gray, raphe,(More)