Learn More
Tailoring materials into different structures offers unprecedented opportunities in the realization of their functional properties. Particularly, controllable design of diverse structured electrode materials is regarded as a crucial step towards fabricating high-performance batteries. Herein, a general biochemistry-directed strategy has been developed to(More)
Rechargeable sodium-iodine and lithium-iodine batteries have been demonstrated to be promising and scalable energy-storage devices, but their development has been seriously limited by challenges such as their inferior stability and the poor kinetics of iodine. Anchoring iodine to 3D porous carbon is an effective strategy to overcome these defects; however,(More)
The paired box 6 (Pax6) gene encodes a transcription factor essential for eye development in a wide range of animal lineages. Here we describe the cloning and characterization of Pax6 gene from the blind hydrothermal vent tubeworm Ridgeia piscesae (RpPax6). The deduced RpPax6 protein shares extensive sequence identity with Pax6 proteins from other species(More)
The development of aqueous rechargeable sodium batteries (ARSBs) demands high-performance electrode materials, especially anode materials with low operating potential and competent electrochemical properties. The lithium/sodium vanadium phosphate family with good structural stability and abundant vanadium chemistry versatility is a promising series for(More)
  • 1