Linjing Mu

Roger Schibli7
Selena Milicevic Sephton3
Roger Slavik2
7Roger Schibli
3Selena Milicevic Sephton
2Roger Slavik
Learn More
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by(More)
Cannabinoid receptor subtype 2 (CB2) has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer's disease. The CB2 receptor is therefore considered as a very promising target for therapeutic(More)
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCR), which activate intracellular secondary messenger systems when bound by the physiological ligand glutamate. Modulation of mGluR5s has potential for the treatment of variety of psychiatric and neurological diseases such as depression, anxiety, schizophrenia and Parkinson's(More)
Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid(More)
Imaging the density of metabotropic glutamate receptor 5 (mGluR5) in brain by positron emission tomography (PET) is of interest in relation to several brain disorders. We have recently introduced [(18) F]PSS232, an F-18-labeled analog of the mGluR5-targeting [(11) C]ABP688. Quantitative PET requires kinetic modeling with an input function (IF) or an(More)
In the search for an optimal fluorine-18-labeled positron emission tomography (PET) radiotracer for imaging metabotropic glutamate receptor subtype 5 (mGluR5), we have prepared a series of five α-fluorinated derivatives based on the ABP688 structural manifold by application of a two-step enolization/NFSI α-fluorination method. Their binding affinities were(More)
Involvement of metabotropic glutamate receptor subtype 5 (mGluR5) in physiological and pathophysiological processes in the brain has been demonstrated, and hence mGluR5 has emerged as an important drug target. [(11)C]-ABP688 is clinically the most successful mGluR5 positron emission tomography (PET) tracer to date and it allows visualization and(More)
Neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane ligand-gated ion channels. Recent research demonstrated that selective nAChR ligands may have therapeutic potential in a number of CNS diseases and disorders. The alkaloid epibatidine is a highly potent non-opioid analgesic and nAChR agonist, but too toxic to be a useful ligand. To(More)
The homology models of the extracellular domains of the neuronal alpha4beta2 (pdb code: 1ole) and ganglionic alpha3beta4 (pdb code: 1olf) rat nicotinic acetylcholine receptor (nAChR) subtypes were refined and energetically minimized. In this work, a series of nAChR ligands (1-15) were docked into the modeled binding cavity of both receptors. High-affinity,(More)
  • 1