Learn More
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and(More)
AL2 and L2 are related proteins encoded by geminiviruses of the Begomovirus and Curtovirus genera, respectively. Both are pathogenicity determinants that cause enhanced susceptibility when expressed in transgenic plants. To understand how geminiviruses defeat host mechanisms that limit infectivity, we searched for cellular proteins that interact with AL2(More)
Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we(More)
Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae.(More)
The yeast Saccharomyces cerevisiae has long been an important model organism for biological investigation (1). More recently, high-throughput approaches using deletion libraries and fusion protein libraries have provided powerful techniques with which to study the entire yeast genome and proteome (2–6). However, the methods typically used for preparing(More)
Flock House virus (FHV), the best studied of the animal nodaviruses, has been used as a model for positive-strand RNA virus research. As one approach to identify host genes that affect FHV RNA replication, we performed a genome-wide analysis using a yeast single gene deletion library and a modified, reporter gene-expressing FHV derivative. A total of 4,491(More)
Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication.(More)
  • 1