Learn More
Angiopoietin-2 (Ang2) exhibits broad expression in the remodeling vasculature of human tumors but very limited expression in normal tissues, making it an attractive candidate target for antiangiogenic cancer therapy. To investigate the functional consequences of blocking Ang2 activity, we generated antibodies and peptide-Fc fusion proteins that potently and(More)
The application of human embryonic stem (hES) cells in regenerative medicine will require rigorous quality control measures to ensure the safety of hES cell-derived grafts. During propagation in vitro, hES cells can acquire cytogenetic abnormalities as well as submicroscopic genetic lesions, such as small amplifications or deletions. Many of the genetic(More)
Gap junctions are intercellular channels that allow both chemical and electrical signaling between two adjacent cells. Gap junction intercellular communication has been implicated in the regulation of various cellular processes, including cell migration, cell proliferation, cell differentiation, and cell apoptosis. This study aimed to determine the presence(More)
AMG 386 is an investigational first-in-class peptide-Fc fusion protein (peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 (Ang1) and Ang2 with their receptor, Tie2. Although the therapeutic value of blocking Ang2 has been shown in several models of tumorigenesis and angiogenesis, the potential benefit of Ang1 antagonism(More)
Human embryonic stem cells (hESCs) have great potential for use in research and regenerative medicine, but very little is known about the factors that maintain these cells in the pluripotent state. We investigated the role of three major mitogenic agents present in serum--sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), and platelet-derived(More)
We investigated the gap junctional properties of human embryonic stem cells (hESC) cultivated in a serum-free system using sphingosine-1-phosphate and platelet-derived growth factor (S1P/PDGF). We compared this condition to hESC grown on Matrigel in mouse embryonic fibroblast conditioned medium (MEF-CM) or unconditioned medium (UM). We show that in all(More)
Treatment of solid tumors with vascular disrupting agent OXi4503 results in over 90% tumor destruction. However, a thin rim of viable cells persists in the tumor periphery following treatment, contributing to subsequent recurrence. This study investigates inherent differences in the microenvironment of the tumor periphery that contribute to treatment(More)
Mizue Moriya, Yi-Hsuan Ho, Anne Grana, Linh Nguyen, Arrissa Alvarez, Rita Jamil, M. Leigh Ackland, Agnes Michalczyk, Pia Hamer, Danny Ramos, Stephen Kim, Julian F. B. Mercer, and Maria C. Linder Department of Chemistry and Biochemistry and Institute for Molecular Biology and Nutrition, California State University, Fullerton, California; and Centre for(More)
Embryonic stem cells (ESCs) have the potential to reprogram somatic cells into ESC-like cells through cell fusion. In the present study, the potential of human (h)ESC cytoplasts and karyoplasts to reprogram human hepatocytes was evaluated. Green fluorescent protein (GFP) transfected hESCs (ENVY cells) were fused with SNARF-1 (CellTracker)-labeled human(More)
Human embryonic stem (hES) cells were originally isolated and maintained on mouse embryonic fibroblast (MEF) feeder layers in the presence of fetal bovine serum (FBS). However, if the hES cells are to be used for therapeutic applications, it is preferable to regulatory authorities that they be derived and cultured in animal-free conditions to prevent mouse(More)