Lingyun Long

Learn More
The degradation of some proto-oncogene and lymphokine mRNAs is controlled in part by an AU-rich element (ARE) in the 3' untranslated region. It was shown previously (G. Brewer, Mol. Cell. Biol. 11:2460-2466, 1991) that two polypeptides (37 and 40 kDa) copurified with fractions of a 130,000 x g postribosomal supernatant (S130) from K562 cells that(More)
The transcription factor IRF3 is a central regulator of type I interferon (IFN) signaling. The mechanisms underlying deactivation of IRF3 are poorly understood although many studies suggest that IRF3 activity is terminated through degradation after viral infection. Here we report that IRF3 is deactivated via dephosphorylation mediated by the serine and(More)
AUF1 is a RNA-binding protein that contains two non-identical RNA recognition motifs (RRMs). AUF1 binds to A + U-rich elements (AREs) with high affinity. The binding of AUF1 to AREs is believed to serve as a signal to a mRNA processing pathway which degrades mRNAs encoding many cytokines, oncoproteins and G protein-coupled receptors. Because the ARE-binding(More)
Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A+U-rich instability elements (AREs) present in the 3'-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were(More)
AUF1 is an RNA-binding protein that contains two nonidentical RNA recognition motifs (RRMs). AUF1 binds to A + U-rich elements (AREs) with high affinity. The binding of AUF1 to AREs is believed to serve as a signal to an mRNA-processing pathway that degrades mRNAs encoding many cytokines, oncoproteins, and G protein-coupled receptors. Because the ARE(More)
A+U-rich elements (ARE) serve to control the degradation of some proto-oncogene and lymphokine mRNAs. The protein, AUF1, which consists of two polypeptides of 37 and 40 kDa (p37 and p40, respectively) when purified from cytosol, has been implicated in ARE-directed mRNA turnover due to its binding to ARE. Molecular cloning of a cDNA (p37AUF1) corresponding(More)
The four members of the albumin gene family encode the serum transport proteins albumin, alpha-fetoprotein, alpha-albumin, and vitamin D-binding protein. These genes are transcribed primarily in the liver with each having a different pattern of developmental expression. The tight linkage of these genes, particularly that of albumin, alpha-fetoprotein and(More)
Multiple enhancers govern developmental and tissue-specific expression of the H19-Igf2 locus, but factors that bind these elements have not been identified. Using chromatin immunoprecipitation, we have found two FoxA binding sites in the H19 E1 enhancer. Mutating these sites diminishes E1 activity in hepatoma cells. Additional chromatin immunoprecipitations(More)
The alpha-fetoprotein (AFP) gene is expressed abundantly in the fetal liver and transcriptionally repressed in the adult liver, but can be reactivated during liver regeneration and in liver tumors. Previous studies identified three enhancers, E1, E2, and E3, upstream of the mouse and rat Afp genes and a single enhancer upstream of the human gene. We have(More)
  • 1